期刊文献+

中国证券市场的非线性特征与分形维分析 被引量:15

Nonlinear Characteristics and Fractal Dimension Analysis of Chinese Stock Markets
原文传递
导出
摘要  采用Cao方法清楚地观测到中国证券市场的月收益率序列是确定性混沌序列,而日收益率序列和周收益率序列却接近于随机波动信号,不适宜做分形维的研究.对我国股市各指数分别作了分形维计算后,同时用替代数据法进行非线性检验,拒绝了中国股市为线性过程的可能性,从而保证了非线性前提下分维数结果的可靠性.结果显示:深证A股市场最为复杂,需要五个变量来建立动力学模型(D2=4 6150),而上证A股需要四个变量来建立模型(D2=3 2411).因此,深圳股市的效率弱于上海股市.而我国B股市场已经接近于发达国家股市的复杂性程度(D2=3 3195(上B);D2=2 5875(深B)),说明B股的效率比A股的效率高. Cao's method is employed in this article to make sure the monthly return series of Chinese Stock Market is chaotic but daily return series and weekly return series were found noisy. Thus monthly return series were analyzed using correlation dimension as well as its surrogate data. Apparent difference of correlation dimension from the monthly return series and its surrogate data rejects the null hypothesis that the monthly return series is derived from a linear system, which confirms that the fractal dimension of Chinese Stock Market stems from an inner nonlinear dynamics. It was concluded that Shanghai A Share's efficiency outweighs Shenzheng A Share's and in general B Share's efficiency outweighs A Share's. Shenzheng A Share is most complex (D_2=4.6150) compared with its Shanghai's counterpart (D_2=3.2411). B Share (D_2=3.3195 (Shanghai B); D_2=2.5875 (Shenzheng B)) approaches the stock complexity of Western countries'.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第5期68-73,共6页 Systems Engineering-Theory & Practice
关键词 非线性 混沌 收益率序列 相关维数 nonlinearity chaos return series correlation dimension
  • 相关文献

参考文献12

  • 1Edgar E. Peters. Chaos and order in the capital markets: A New View of Cycles, Prices, and Market Volatility, Second Edition IMP, John Wiley and Sons, Inc, 1996.
  • 2陈平.经济混沌和经济波动的非线性动力学理论[C]..北京大学中国经济研究中心讨论稿系列 No.C2000015[C].,2000-10..
  • 3Scheinkman J A, LeBaron B. Nonlinear dynamics and stock returns[J].Journal of Business, 1989,62:311 - 337.
  • 4林小明,王美今.我国股票市场的混沌现象与市场有效性[J].数量经济技术经济研究,1997,13(4):51-53. 被引量:18
  • 5樊智,张世英.金融市场的效率与分形市场理论[J].系统工程理论与实践,2002,22(3):13-19. 被引量:48
  • 6唐奎,宿成建,王宗笠.中国与海外股指的混沌特征的比较实证[J].重庆大学学报(自然科学版),2003,26(7):139-142. 被引量:4
  • 7张永东.上海股票市场非线性与混沌的检验[J].管理工程学报,2003,17(3):21-26. 被引量:17
  • 8Holger Kantz,Thomas Schreiber. Nonlinear time series analysis[M]. Cambridge University Press, 1997.
  • 9Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D. 1983,9:189-208.
  • 10Takens F. Detecting strange attactors in turbulence[J] Lecture Notes in Mathematics. Springer-Verlag, 1981,898:366-381.

二级参考文献31

  • 1林小明,王美今.我国股票市场的混沌现象与市场有效性[J].数量经济技术经济研究,1997,13(4):51-53. 被引量:18
  • 2埃德加E彼得斯.资本市场的混沌与秩序(第2版)[M].北京:经济科学出版社,1993..
  • 3埃德加.E.彼得斯著.王小东译.资本市场的混沌与秩序(第二版)[M].北京:经济科学出版社,1999..
  • 4Brock, W, Hsieh D, LeBaron B. Nonlinear Dynamics, Chaos and Instability[ M]. Cambridge: MIT Press, 1991.
  • 5Scheinkman J A, LeBaron B. Nonlinear dynamics and stock returns[ J ]. Journal of Business, 1989,62: 311 - 337.
  • 6Brock W, Dechert W, Scheinkman J, and LeBaran B. A test for independence based on the correlation dimension [ J ]. Econometric Reviews, 1996,15 : 197 - 235.
  • 7Abhyankar A, Copeland L S, Wong W. Nonlinear dynamics in real-time equity market indices: evidence from the United Kingdom [ J ].The Economic Journal, 1995,105:864 - 880.
  • 8Abhyankar A, Copeland L S, Wong, W. Uncovering nonlinear structure in real-time stock market indexes: the S&P 500, the DAX, the NIKKEI 225 and the FTSE-100 [ J]. Journal of Business and Economic Statistics. 1997.15:1 - 14.
  • 9Barkoulas J, Travlos N. Chaos in an emerging capital market? The case of the Athens stock exchange[J]. Applied Financial Economics,1998,8:231 - 243.
  • 10Hsieh D A. Chaos and nonlinear dynamics: application to financial markets[J]. The Journal of Finance, 1991,46:1839- 1877.

共引文献82

同被引文献177

引证文献15

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部