期刊文献+

构造哈密尔顿系统jet辛差分格式的生成函数法

The Construction of Jet Symplectic Difference Scheme for Hamiltonian Systems via Generating Functions
下载PDF
导出
摘要  考虑哈密尔顿系统的保结构算法,在经典哈密尔顿系统的jet辛算法的基础上,给出了一般哈密尔顿系统的jet辛差分格式的定义.并利用带有变系数辛矩阵的一般哈密尔顿系统中的构造辛差分格式的生成函数法的思想,来建立由一般的反对称矩阵所确定的微分二形式与生成函数的关系,再利用哈密尔顿-雅可比方程来构造jet辛的差分格式. A method preserving structures of the Hamiltonian systems is considered. On the basis of the jet symplectic difference scheme for canonical Hamiltonians the jet symplectic difference scheme for Hamiltonian systems in general symplectic structure with variable coefficientsic is defined . According to the general approach of the generating function method for the symplectic difference schemes a relation between the general symplectic structure and the generating functions is found. The jet symplectic difference schemes for classical Hamiltonian systems are constructed in terms of Hamilton-Jacobi equation.
出处 《计算物理》 CSCD 北大核心 2005年第3期206-216,共11页 Chinese Journal of Computational Physics
关键词 哈密尔顿系统 辛差分格式 生成函数法 JET 构造 保结构算法 反对称矩阵 雅可比方程 辛算法 辛矩阵 变系数 再利用 微分 Hamiltonian systemes symplectic method generating functions jet symplectic
  • 相关文献

参考文献22

  • 1Arnold V I. Mathematical methods of classical mechanics[M]. New York:Springer, 1978.
  • 2Feng K. On difference schemes and sympliectic geometry[A]. In: Feng K, ed. Proc 1984 Beijing Symp Diff Geometry and Diff Equations. Beijing: Science Press, 1985. 42 - 85.
  • 3Ruth R D. A canonical integration technique[J]. IEEE Trans Nucl Sci, 1983,30: 2669 - 2671.
  • 4Channell P J. Symplectic integration algorithms[R]. Los Alamos National Laboratory Report, Report AT-6ATN 83 - 9.
  • 5Menyuk C R. Some properties of the discrete Hamiltonian method [J]. Physica D, 1984, 11: 109 - 129.
  • 6Feng Kang. Difference schemes for Hamiltonian formalism and sympectic geometry[J]. J. Comput Math, 1986a, 4:279 - 289.
  • 7Feng Kang. Symplectic geometry and numerical methods in fluid dynamics [ A ] . In: Tenth International Conference on Numerical Methods in Fluid Dynamicx(Lecture Notes in Physics 264) (F. G. Zhuang and Y. L. Zhu,eds), Berlin: Springer, 1986b, 1 - 7.
  • 8Feng Kang, Wu H M, Qin M Z, Wang D L. Construction of canonical difference schemes for hamiltonian formalism via generating functions[J]. J Comp Math. 1989, 7( 1 ) :71 - 89.
  • 9Sanz-Serna J M. Symplectic integrators for Hamiltonian problems : an overviewp [ J ]. Acta Numerica, 1992.1 : 243 - 286.
  • 10Lasagni F. Canonical Runge-Kutta methods[ J ]. ZAMP , 1988, 39:952 - 953.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部