期刊文献+

改善线性预测系数倒谱抗噪声性能的方法

Approach to improvement of robust performance of linear prediction coefficient cepstral
下载PDF
导出
摘要 线性预测系数倒谱(LPCC)是说话人辨认系统中较为有效的特征参数之一,但是该参数的抗噪性能不好,当语音中含有噪声时,系统的识别率明显下降。基于MATLAB软件,建立了一高斯混合模型(GMM)的说话人辨认系统,提出了特征参数加权窗口的方法。通过对多种加权窗口的正确识别率比较,发现对LPCC低阶参数的加窗提升,可以改善系统的噪声鲁棒性。MATLAB仿真结果显示,采用加窗后的系统识别率得到了明显改善。 The linear prediction coefficient cepstral (LPCC) is one of the effective feature coefficients, but the performance of LPCC is not good in noise environment. The right recognition rate of a speaker identification system goes down evidently when the speech con- tains noise. A speaker identification system was set up based on Gaussian Mixture Model (GMM) with MATLAB and a approach of the cepstal liftering window was used to improve robust of the feature coefficient. With compared different liftering windows in the result of right recognition rate, the low cepstal terms of LPCC make better robust performance in speaker recognition. The simulation result in MATLAB indicates the performance of the system with liftering window is further improved.
作者 韩春光
出处 《计算机工程与设计》 CSCD 北大核心 2005年第5期1377-1379,共3页 Computer Engineering and Design
  • 相关文献

参考文献5

  • 1易克初 田斌 付强.语音信号处理[M].北京:国防工业出版社,2001..
  • 2LawrenceRabiner Biing-HwangJuang.语音识别基本原理[M] 影印版[M].北京:清华大学出版社,1999..
  • 3Qi Li, Biing-Hwang Juang, Chin-Hui Lee,et al. Recent advancements in automatic speaker authentication[J].IEEE Robotics& Automation Magazine, MARCH, 1999.
  • 4尉洪,周浩,杨鉴.基于矢量量化的组合参数法说话人识别[J].云南大学学报(自然科学版),2002,24(2):96-100. 被引量:8
  • 5ZHEN Bin, WU Xi-hong, LIU Zhi-min, et al.On the importance of components of the MFCC in speech and speaker recognition [C]. ICSLP, 2000.

二级参考文献2

  • 1LAWRENCE RABINER BING-HWANG JUANG.Fundamentals of speech recognition语音识别基本原理[M].北京:清华大学出版社,1999..
  • 2冯宗哲 程相君.模式识别原理[M].西安:西安电子科技大学出版社,1999..

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部