期刊文献+

基于内容图像检索中的颜色特征描述 被引量:9

Color Feature Description in CBIR
下载PDF
导出
摘要 多媒体数据库应用需要有效的基于内容相似性检索方法。颜色特征由于其简单、计算复杂度低及对几何变换的不变性成为机器可自动提取的图像内容中最重要的特征。文章讨论了颜色特征的表示及其进展。直方图是使用最普遍的颜色特征描述符,它必须选择与人类视觉机制一致的颜色空间和量化模式。直方图与空间关系的组合可提高图像内容描述的精度,因而提供更好的颜色特征匹配。由于基于小波变换的编码技术已成为JPEG2000等图像编码标准的核心,因此基于小波变换系数特征描述方法已越来越受到重视。由于图像颜色的心理作用可影响观察者对图像的理解,如何建立与心理活动及视觉机制相适应的颜色特征模型,提取这些语义级的高级抽象内容是我们必须面对的挑战。 The application of Multimedia database requires efficient content-based similarity retrieval method.Due to its simple,low computation complexity and invariant to geometric transform,color feature is the most important feature in automatic extractable image contents.Color feature description and its advance are discussed in this paper.Histogram is the most popular color feature description.combination of histogram and space relation such as local histogram,CCV(Color Consistent Vector) can increase image description precision,so as to provide better solution to color feature match.Due to Wavelet transform based coding technology have become core of image coding standard such as JPEG 2000,so wavelet transform coefficient based feature description have get more and more attention.A true content based image retrieval system require semantic based features.Image color can effect viewer's emotion,how to extract these high abstract content is a challenge that must confront.
作者 胡必鑫
出处 《计算机工程与应用》 CSCD 北大核心 2005年第16期48-50,113,共4页 Computer Engineering and Applications
关键词 基于内容图像检索 颜色特征描述 图像数据库索引 CBIR,color feature,image database indexing
  • 相关文献

参考文献26

  • 1Jose M Marlinez.Overview of the MPEG-7 standard(version 6.0)[S]. ISO/IEC JTC1/SC29/WG11, N4509,2001-12.
  • 2J Ashley et al.Automatic and semi-automatic methods for image annotation and retrieval in QBIC.SPIE Proc:Storage and Retrieval for Image and Video Database Ⅲ, 1995:24-35.
  • 3M Stricker,M Orengo.Similarity of color images.SPIE storage and Retrieval for Image and Video Database,1995.
  • 4M J Swain, D H Ballard.Color Indexing,International[J].Journal of Computer Vision, 1991 ;7 (1).
  • 5Y Deng,B S Manjunath,C Kenney et al.An Efficient Color Representation for Image Retrieval[J].IEEE Trans on Image Processing, 2001;10(1).
  • 6X Wang,C Kuo.A new approach to image retrieval with hierarchical color clustering[J].IEEE Trans Circuits Syst Video Tech, 1998;8: 628-643.
  • 7A Mojsilovic,J Hu,E Soljanin.Extraction of Perceptually Important Colors and Similarity Measurement for Image Matching,Retrieval,and Analysis[J]. IEEE Transactions on Image Processing, 2002;11(11): 1238-1248.
  • 8S Sablak,T E Boult.Multilevel Color Histogram Representation of Color Images by Peaks for Omni-Camera[C].In:Proceedings of the IASTED International Conference Signal and Image Processing,Nassau,Bahamas, 1999-10:18-21.
  • 9M Stricker,A Dimai.Color Indexing With Weak Spatial Constraints [J].SPIE Proceedings, 1996;2670:29-40.
  • 10J Huang,S R Kumar,M Mitra et al.Image indexing using color correlograms[C].In:Proc IEEE Conf Computer Vision Pattern Recognition, 1997:744-749.

同被引文献93

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部