摘要
研究了球界面下卫星测高问题的解法,利用有限逼近方法得到了下列结论:若陆地部分是球冠,则卫星测高问题的解可以转换成关于球谐级数位系数的线性方程组,并且位系数的阶和次是以分离形式出现的,从而确保该解法具有实用意义.利用重力场36 0阶模型进行模拟计算的结果表明:该解法得到的位系数的相对精度达到了10 - 1 1 .同时证明了常用的Stokes问题、Dirichlet问题、Neumann问题可以看成卫星测高问题的特殊情况.
With the idea of finite approximation, we study a new solution method for the satellite altimetry problem. Our result shows that if the continental part of the earth is sphere cap, then the solution of satellite altimetry problem can be transformed into a linear system of equations with variants of the coefficients of spherical harmonic series. We prove that the linear system of equations is separated about the orders of spherical harmonic series. By making use of the imitation computation for the EGM96 model, it is concluded that the solution method given in the paper can reach accuracy of 10 -11. In addition, we also prove that solutions for the Stokes problem, Dirichlet problem and Neumann problem are all particular cases of the satellite altimetry.
出处
《地球物理学报》
SCIE
EI
CAS
CSCD
北大核心
2005年第3期561-566,共6页
Chinese Journal of Geophysics
基金
国家自然科学基金项目 (4 0 3 740 0 1)资助
关键词
卫星测高问题
球谐级数
二次泛函
Satellite altimetry problem,Spherical harmonic series,Quadratic functional