期刊文献+

脑电活动混沌理论预报癫痫发作的可行性 被引量:1

Chaos analysis of electroencephalogram data for predicting epilepsy
下载PDF
导出
摘要 目的:应用脑电波变化的非线性动力学特征,以混沌理论对长时程视频脑电资料进行分析,以期预测癫痫发作。方法:选择2004-08/11经解放军第四军医大学附属唐都医院神经外科确诊的癫痫患者13例,患者知情同意。对患者长时程视频脑电资料中32次自发性发作进行分析,比较发作前期与发作间期的相关维数,差异有显著性意义时,即有明显的发作前期。结果:13例患者全部进入结果分析。应用混沌理论分析结果,32次发作中27次发作前相关维数降低,占84%。在这27次发作中,平均可提前(12.26±2.35)min得到预测。13例患者中有11例出现过明显的发作前期(85%),单个患者可预测的发作比例平均为(79±36.6)%。结论:脑电非线性动力学改变在癫痫发作前期较为普遍,运用混沌理论分析脑电资料可以初步预测癫痫的发作。 AIM:To analyze the long term video electroencephalogram data with chaos theory according to non linear dynamical character of the changes of brain wave so as to predict epileptic seizure. METHODS:A total of 13 patients with seizure were selected from the Department of Neurosurgery,Tangdu Hospital of Fourth Military Medical University of Chinese PLA from August to November 2004.Informed consent was obtained from all the subjects before enrollment.Long term video electroencephalogram data of the 32 time spontaneous seizure in patients were analyzed.Correlation dimension analysis method was used to compare the difference between prophase and interphase of epileptic seizure,and significant difference would indicate obvious prophase of epileptic seizure. RESULTS:All 13 patients were involved in the result analysis. The chaos analysis indicated that correlation dimension decreased in 27 of 32 times of spontaneous epileptic seizure (84% ).The mean anticipation time for the 27 time seizures was(12.26± 2.35) minutes.A significant prophase state was detected in 11 of 13 patients(85% ).The mean percentage of anticipated seizures per patient was(79± 36.6) % . CONCLUSION:The non linear dynamics changes of electroencephalogram in prophase of epileptic seizure are a general phenomenon.Anticipating the epileptic seizure with chaos analysis is feasible.
出处 《中国临床康复》 CSCD 北大核心 2005年第17期118-119,共2页 Chinese Journal of Clinical Rehabilitation
  • 相关文献

参考文献6

  • 1Kirsch P, Besthorn C, Klein S, et al. The dimensional complexity of the EEG during cognitive tasks reflects the impaired information processing in schizophrenic patients. Int J Psychophysiol 2000; 36(3): 237 -46
  • 2Jelles B, Strijers R L, Hooijer C, et al. Nonlinear EEG analysis in early Alzheimer's disease. Acta Neurol Scand 1999; 100(6): 360 -8
  • 3Schiff ND, Ladar DR, Victor JD. Common dynamics in temporal lobe seizures and absence seizures. Neuro-science 1999; 91 (2): 417 - 28
  • 4Elger CE, Widman G, Andrzejak R, et al. Nonlinear EEG analysis and potential role in epileptology. Epilepsia 2000; 41 (Suppl 3 ): 34 - 8
  • 5Grassberger P, Procaccia I. Charavterization of stranger attractors. J Phys Rev Lett 1983: 50(5): 346 -9
  • 6朱丹彤,金丽娟,谢光洁.癫痫患者的生存质量及个性探讨[J].中国临床康复,2002,6(1):34-36. 被引量:16

二级参考文献9

  • 1张理义,高柏良.癫痫患者的行为特征,社会支持及其影响因素的研究[J].中国行为医学杂志,1993,2(1):64-65. 被引量:2
  • 2CRAMER JA,WESTBROOK LE,DEVINSKY O, et al. Development of the quality of life in epilepsy inventory for adolescents:the QOLIE AD 48[J].Epilepsia,1999, 40(8):1114- 1121.
  • 3CRAMER JA,PERRINE K,DEVINSKY O,et al.Development and cross- cultural translations of a 31 item quality of life in epilepsy inventory[J].Epilepsia, 1998,39(1):81- 88.
  • 4DEVINSKY O, VICKREY BG, CRAMER J, et al.Development of the quality of life in epilepsy inventory[J]. Epilepsia,1995,36(11):1089- 1104.
  • 5GILLIAM F,KUZNIECKY R,FAUGHT E, et al.Patient validated con tent of epilepsy specific quality of life measurement[J].Epilepsia,1997,38(2):233- 236.
  • 6LEIDY NK, ELIXHAUSER A,VICKREY B, et al.Seizure frequency and the health related quality of life of adults with epilepsy[J]. Neurology, 1999,53(1):162- 166.
  • 7NEUGEBAUER R, PAIK M,HAUSER WA,et al. Stressful life events and seizure frequency in patients with epilepsy[J]. Epilepsia, 1994,35( 2):326.
  • 8卓大宏.生存质量研究在康复医学中的应用[J].现代康复,2000,4(8):1130-1133. 被引量:40
  • 9黄晓春,李泽兵,陈君.生存质量及其影响因素[J].现代康复,2000,4(8):1138-1139. 被引量:19

共引文献15

同被引文献21

  • 1李建川,王薇薇,王荫华,吴逊.托吡酯药物定量脑电图研究的非线性分析[J].中华神经科杂志,2005,38(5):297-300. 被引量:2
  • 2陶华英,武士京.脑电图动态非线性分析对癫痫发作预报的评估意义[J].中国临床康复,2005,9(37):18-19. 被引量:7
  • 3Jelles B,van Birgelen JH,Sleaets JP,et al. Decrease of non-linear structrue in the EEG of alzheimer patients compared to healthy controls[J]. Clin Neurophysiol, 1999,110(7) : 1 159-1 167.
  • 4Savit R, Li D, Zhou AW, et al. Understanding dynamic changes in temporal lobe epilepsy[J]. J Clin Neurophysiol, 2001,8 (3) : 246-258.
  • 5Widman G, Binmann D, Lehnertz K, et al. Reduced signal complexity of intracellular recordings: a precursor for epilepti-form activity? [J]. Brain Res, 1999,836(1-2):156-163.
  • 6Widman G, Lehnertz K, Urbach H, et al. Spatial distribution of neuronal complexity loss in neocortical lesional epilepsies [J]. Epilepsia, 2000,41(7) : 811-817.
  • 7Casdagli MC, Lasemidis LD, Savit RS, et al. Non-1 inearity syin invasive EEG recordings from patients with temporal lobe epilepsy[J]. Electroencephalogr Clin Neurophysiol, 1997, 102 (2): 98-105.
  • 8McSharry PE, He T, Smith LA, et al. Linear and nonlinear methods for automatic seizure detection in scalp electroencephalogram recordings[J]. Med Biol Eng Comput, 2002,40 (4):447-461.
  • 9le van Quyen M, Adam C,Martinerie J, et al. Spatiotemporal characterizations of nonlinear changes in intracranial activities prior to human temporal lobe seizures [J]. Eur J Neurosci, 2000,12(6):2 124-2 134.
  • 10Elger CE, I.ehnertz K. Seizure prediction by nonlinear time series analysis of brain electrical activity[J]. Eur J Neurosci, 1998,10(2):786-789.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部