期刊文献+

带PN结的高维半导体漂流扩散方程组的拟中性极限 被引量:1

Quasineutral Limit of the Multi-dimensional Drift-diffusion Models for Semiconductors With PN-junctions
下载PDF
导出
摘要 为了研究带PN结的高维半导体漂流扩散方程组的拟中性极限问题,使用能量方法和entropy方法在索伯列夫范数意义下严格证明了具有好边界的变号doping轮廓情形下的PN结高维半导体漂流方程组的拟中性极限。 The quasineutral limit of drift-diffusion models for semiconductors with PN-junctions (i.e. with a fixed bipolar background charge) is studied in the multi-dimensional case. For generally smooth sign-changing doping profiles with good boundary conditions, the quasineutral limit (zero-Debye-length limit) is justified rigorously in the Sobolev's norm uniformly in time. The proof is based on the elaborate energy method and the relative entropy functional method which yield the uniform estimates with respect to the scaled Debye length.
作者 王术 赵彩霞
出处 《北京工业大学学报》 CAS CSCD 北大核心 2005年第3期328-331,共4页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(10471009)北京市自然科学基金资助项目(1052001).
关键词 PN结 高维半导体 拟中性极限 漂流扩散方程组 相对entropy函数方法 PN-junctions multi-dimensional semiconductors quasineutral limit drift-diffusion equations relative entropy method
  • 相关文献

参考文献12

  • 1MARKOWICH P A, RINGHOFER C, SCHMEISER C.Semiconductors Equations[M].New York:Springer-Verlag, 1990.
  • 2SHOCKLEY W.The theory of p-n junctions in semiconductors and p-n junction transistors[J].Bell Syst Tech J, 1949,28:435-489.
  • 3SITENKO A, MALNEY V.Plasma Physics Theory[M].London:Champman & Hall, 1995.
  • 4ROOSBROECK W V.Theory of the flow of electrons and holes in Germanium and other semiconductors[J].Bell Syst Tech J, 1950,29:560-607.
  • 5BRENIER Y.Converence of the Vlasov-Poisson system to the incompressible Euler equations[J].Commun Partial Diff Eqs,2000,25(3,4):737-754.
  • 6MASMOUDI N.From Vlasov-Poisson system to the incompressible Euler system[J].Comm Partial Differential Equations,2001,26(9,10):1913-1928.
  • 7SCHMEISER C, WANG S.Quasineutral limit of the drift-diffusion model for semiconductors with general mitial data[J].Math Modeling Method Appl Sci,2003,13(4):463-470.
  • 8WANG S.Quasincutral limit of Euler-Poisson system with and without viscosity[J].Commun P D E, 2004,29(3,4):419-456.
  • 9SZE S M.Physics of Semiconductor Devices[M].New York:Wiley-Interscience, 1969.
  • 10WANG S, XIN Z P, MARKOWICH P A.Quasineutral limit of the drift diffusion models for semiconductors:The case of general sign-changing doping profile[J].SIAM J Math Anal(to appear).

同被引文献12

  • 1甘巧强,朱晓鹏,潘学俭,邓捷,宋国锋,陈良惠.半导体激光器光束特性的计算机模拟与实验研究[J].激光技术,2004,28(3):298-302. 被引量:1
  • 2陈传军,龙晓瀚.热传导型半导体瞬态问题的特征有限体积方法及分析[J].应用数学学报,2005,28(3):551-562. 被引量:2
  • 3高劭宏,黄德修,高彦锟,杨新民,刘德明,陈俊,胡振华,刘小英.利用传输矩阵法分析取样光栅DBR半导体激光器[J].红外与激光工程,2005,34(4):415-420. 被引量:4
  • 4Moll J L,Ross I M. The dependence of transistor parameters on the distribution of base layer resistivity [J]. Proceedings of IRE, 1956,44 (1) : 72 -78
  • 5Lang R. Lateral transverse mode instability and its stabilization in stripe geometry injection lasers [ J ]. IEEE J Quantum Electron, 1979,15 (8) :718 -726
  • 6Kahen K B. Two - dimensional simulation of laser diodes in the steady state [ J ]. IEEE J Quantum Electron, 1988,24 (4) :641 -651
  • 7Tan G L, Bewtra N, Lee K, et al. A two - dimensional nonisothermal finite element simulation of laser diodes [ J ]. IEEE J Quantum Electron, 1993,29 (3) : 822 - 835
  • 8Yan R H, Corzine S W, Coldren L A, et al. Corrections to the expression for gain in GaAs [ J ]. IEEE J Quantum Electron ,1990,26 (2) :213 -216
  • 9Sadovnikov A D,Xun Li, Huang W P, et al. A two - dimensional DFB laser model accounting for carrier transport effects [ J ]. IEEE J Quantum Electron, 1995,31 (10) :1856 -1862
  • 10Debaisieux G, Herve G G, Filoche M, et al. Self- consistent 1 - D solution of mulfiquantum - well laser equations [ J ]. Optical and Quantum Electronics, 1997,29 (6) :651 -660

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部