期刊文献+

碳化硅CMOS倒相器温度特性 被引量:2

Study of temperature properties of the SiC CMOS inverter
下载PDF
导出
摘要 建立了6H SiC材料和器件模型,应用二维器件仿真软件MEDICI对所设计的亚微米6H SiC CMOS倒相器的温度特性进行了研究.研究结果表明,该倒相器在600K的高温下仍可以正常工作,且具有良好的电压转移特性和瞬态特性;在300~600K的温度范围内,倒相器阈值电压由1.218V变化到1.274V,变化幅度较小. Based on the relevant models of 6H-SiC material and devices, the temperature properties of the submicron 6H-SiC CMOS inverter proposed in this paper are investigated with the 2-Dimensional device simulator MEDICI. Simulation results show that the inverter can operate at 600 K and has better voltage transfer and transient characteristics. The calculated switching threshold voltage of the inverter varies from 1.218 V to 1.274 V in the temperature range of 300-600 K with a 5 V power supply and its change is not significant. All this provides a valuable reference for the design of and the research on more complicated high temperature 6H-SiC CMOS circuits.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2005年第3期396-399,共4页 Journal of Xidian University
基金 教育部重点资助项目(02074) 国家部委科技预研基金资助项目
关键词 6H-SIC CMOS倒相器 温度特性 电压转移 阈值电压 CMOS integrated circuits Semiconducting silicon Silicon carbide Temperature Threshold voltage Two dimensional
  • 相关文献

参考文献10

  • 1王平,周津慧,杨银堂,屈汉章,杨燕,付俊兴.6H-SiC高场输运特性的多粒子蒙特卡罗研究[J].光子学报,2004,33(3):322-325. 被引量:3
  • 2王平,杨银堂,屈汉章.n型4H-SiC电子霍耳迁移率解析模型[J].西安电子科技大学学报,2004,31(4):538-542. 被引量:1
  • 3Schorner R, Friedrichs P, Peters D. Detailed Investigation of N Channl Enhancement 6H-SiC MOSFET[J]. IEEE Trans on Electron Devices, 1999, 46(3): 533-540.
  • 4Hasanuzzama M, Islam S K, Tolbert L M. Effects of Temperature Variation (300-600K) in MOSFET Modeling in 6H-Silicon Carbide[J]. Solid State Electronics, 2004, 48(3): 125-132.
  • 5Xie W, Cooper J A, Melloch M R. Monolithic NMOS Digital Integrated Circuits in 6H-SiC[J]. IEEE Electron Device Letters, 1994, 15(6): 455-457.
  • 6Schmid U, Sheppard S T, Wondrak W. High Temperature Performance of NMOS Integrated Inverters and Ring Oscillators in 6H-SiC[J]. IEEE Trans on Electron Devices, 2000, 47(4): 687-691.
  • 7Slater D B Jr, Lipkin L A, Johnson G M, et al. High Temperature Enhancement-mode NMOS and PMOS Devices and Circuits in 6H-SiC[A]. IEEE Device Research Conference[C]. Charlottesville: IEEE, 1995. 100-103.
  • 8Avant! Corporation. Medici Two-Dimensional Device Simulation Program Version 4.1 User Manual[Z]. California: TACAD Business Unit, 1998.
  • 9Ryu S H, Kornegay K T. Digital CMOS ICs in 6H-SiC Operating on a 5V Power Supply[J]. IEEE Trans on Electron Devices, 1998, 45(1): 45-52.
  • 10Levinshtein M E, Rumyantsev S L, Michael S S. Properties of Advanced Semiconductor Materials[M]. New York: John Wiley & Sons, 2001.

二级参考文献23

  • 1叶良修.小尺寸半导体器件的Monte Carlo模拟[M].北京:科学出版社,1997.342-383.
  • 2Siergiej R R, Clark A H, Sriram S. Advances in SiC Materials and Devices: an Industrial Point of View[J]. Material Science and Engineering(B), 1999, 61-62(1): 1-8.
  • 3Mickevicius P, Zhao J H. Monte Carlo Study of Electron Transport in SiC[J]. J Appl Phys, 1998, 83(6): 3161-3167.
  • 4Nilsson H E, Sannemo U, Petersson C S. Monte Carlo Simulation of Electron Transport in 4H-SiC Using a Two-band Model with Multiple Minima[J]. J Appl Phys, 1996, 80(6): 3365-3369.
  • 5Zawadzki W. Electron Transport Phenomena in Small-gap Semiconductors[J]. Adv Phys, 1974, 23(30): 435-516.
  • 6Persson C, Lindefelt U. Relativistic Band Structure Calculation of Cubic and Hexagonal SiC Polytypes[J]. J Appl Phys, 1997, 82(11): 5496-5507.
  • 7Schadt M, Pensl G. Anistropy of the Electron Hall Mobility in 4H, 6H, and 15R SiC[J]. Appl Phys Lett, 1994, 65(24): 3120-3122.
  • 8Choyke W J, Matsunami H, Pensl G. Silicon Carbide: a Review of Fundamental Questions and Applications to Current Device Technology[M]. Berlin: Akademie Verlag, 1997.
  • 9Levinshtein M E, Rumyantsev S L. Properties of Advanced Semiconductor Materials[M]. New York: Wiley, 2001.
  • 10Pernot J, Zawadzki W. Electrical Transport in 4H-SiC[J]. J Appl Phys, 2001, 90(4): 1869-1878.

共引文献2

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部