期刊文献+

马氏矩阵反演的算子证明(英文)

The operator proof of Ma's matrix inverse
下载PDF
导出
摘要 为了给出拉格朗日反演的统一性方法,Krattenthaler提出了算子方法并找到一对普遍的反演关系:Krattenthaler公式. 马欣荣建立了一个新的普遍性的矩阵反演:马氏矩阵反演,使Krattenlhaler公式和Warnaar公式成为其特例.本文将利用Krattenthaler算子方法给出这个普遍性矩阵反演在具体形式下的算子法证明. With an effort to investigate a unified approach to the famous Lagrange inverse,Krattenthaler put forward one kind of operator method and finally found a general pair of inverse relations named Krattenthaler formula. Recently, Ma set up a new unified matrix inversion containing Krattenthaler s and Warnaar s formula as special cases. The present paper reproof Ma's matrix inverse via Krattenthaler s operator method.
作者 路韵 黄建峰
出处 《苏州大学学报(自然科学版)》 CAS 2005年第2期17-21,共5页 Journal of Soochow University(Natural Science Edition)
关键词 矩阵反演 证明 拉格朗日反演 算子方法 反演关系 普遍性 统一性 公式 算子法 operator inverse relations Krattenthaler's formula Wamaar's formula Ma's matrix inverse
  • 相关文献

参考文献13

  • 1ANDEWS G E.Multiple series Roger-Ramanujan type identites[J].Pacific J Math,1984,114:267-283.
  • 2ANDEWS G E.q-series:their developement and application in analysis,number theory,combinatorics,physics and computer algebra[A].CBMS Regional Conference Series in Mathematics,Providence R I:AMS,1986.
  • 3BRESSOUD D M.A matrix inverse[J].Proc Amer Math Soc,1983,88:44-48.
  • 4CARITZ L.Some inverse relations[J].Duke Math J,1973,40:893-901.
  • 5CHU W C,HSU L C.Some new applications of Goul-Hsu inversions[J].J Combine Inform System Sci,1990,14:1-4.
  • 6GOULD H W,HSU L C.Some new inverse series relation[J].Duke Math J,1973,40:881-891.
  • 7GESSEL I,STATON D.Applications of q-Lagrange version to basic hypergeometric series[J].Trans Amer Math Soc,1983,277:173-201.
  • 8KRATTENTHALER C.Operator methods and Lagrange inversion:a unified approach to Lagrange formula[J].Trans Amer Math Soc,1988,305:431-465.
  • 9KRATTENTHALER C.A new matrix inverse[J].Proceeding of American Math Soc,1996,124(1):47-59.
  • 10MA Xin Rong Department of Mathematics.Suzhou University,Suzhou 215006.P.R.China E-mail:t7421689@pub.sz.jsinfo.net.A Short Proof of Krattenthaler Formulas[J].Acta Mathematica Sinica,English Series,2002,18(2):289-292. 被引量:1

二级参考文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部