期刊文献+

与一类半乘法函数相关联矩阵的行列式的界

Bounds for determinants of Matrices Associated with Classes of Semi-multiplicative Functions
下载PDF
导出
摘要 设f是算术函数,S={x1,x2,…,xn}是一个n元正整数集.(f[xi,xj])表示一个n阶方阵,它的i行j列处的元素为函数f在[xi,xj]处的取值,其中[xi,xj]为xi和xi的最小公倍数.作者证明了对于某个算术函数类,若f是一个半乘法函数且1f属于这个函数类,则矩阵(f[xi,xj])是半正定的,进而给出了其行列式的明确的下界和上界.若以f(c)表示函数f的c重狄利克雷乘积,则矩阵1f(c)[xi,xj]也有类似的结论. Let f be an arithmetical function and S = {x_l,...,x_n} be a set of distinct positive integers. Let ((f)) denote the n×n matrix having f evaluated at the least common multiple of x_i and x_j as its i,j entry. The authors show that for a certain class of arithmetical functions, the matrix ((f)) is semi-positive definite. They also get sharp lower and upper bounds for det(f). Denot the c-th Dirichlet convolution of f by f^((c)), they show that the n×n matrix (1f^((c))) has similar results.
作者 杨勇 洪绍方
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期613-616,共4页 Journal of Sichuan University(Natural Science Edition)
关键词 行列式 关联矩阵 乘法 最小公倍数 算术函数 正整数集 N阶方阵 狄利克雷 函数类 半正定 n元 乘积 上界 下界 类似 arithmetical function multiplicative function semi-multiplicative function Dirichlet convolution
  • 相关文献

参考文献7

  • 1Bourque K, Ligh S. Matrices associated with arithmetical functions[J]. Linear Multilinear Algebra, 1993, 34:261 -267.
  • 2Bourque K, Ligh S. Matrices associated with classes of arithmetical functions[J]. J. Number Theory, 1993, 45:367 -376.
  • 3Bourque K, Ligh S. Matrices associated with multiplicative functions[J]. Linear Algebra Appl, 1995, 216:267 - 275.
  • 4Hong S. Bounds for determinants of matrices associated with classes of arithmetical functions[J]. Linear Algebra Appl,1998, 281:311 - 322.
  • 5Rearick D. Semi-multiplicative function[J]. Duke Math. J, 1966, 33:49- 53.
  • 6Hong S. Gcd-closed sets and determinants of matrices assated with arithmetical functions[J]. Acta Arith, 2002, 101:321 - 332.
  • 7Hong S, Loewy R. Asymptotic behavior of eigenvalues of greatest common divisor matrices[ J ]. Glasgow Math. J, 2004,46: 551 - 569.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部