期刊文献+

海底天然气渗漏系统水合物成藏过程及控制因素 被引量:47

FORMATION AND ITS CONTROLLING FACTORS OF GAS HYDRATE RESERVOIR IN MARINE GAS VENT SYSTEM
下载PDF
导出
摘要 在海底天然气渗漏系统沉淀水合物的动力学基础上,建立了水合物沉淀与分解的化学动力学模型。应用该模型分析了美国墨西哥湾布什山天然气渗漏系统水合物的成藏过程,探讨了水合物沉淀、稳定性影响因素。在渗漏通量为每年400kg·m-2的单个通道中,约需425a才能导致水合物稳定带沉积层约30%孔隙完全被水合物充填,渗漏通道被堵塞,沉淀的水合物在剖面上从稳定带底部向海底趋于富C3+C4。在渗漏通道天然气流量由弱到强再到弱的演化过程中,渗漏速度增大过程中形成的水合物在渗漏速度减小过程中将分解,总量约10%的水合物将被分解。如果分解产生的天然气可快速迁移出渗漏系统,海底温度的升高可引起约40%的水合物在20d内分解,并导致海底渗漏速度的急剧增大。 A chemical kinetic model of hydrate crystallization and dissolution in a gas vent system was constructed based on the kinetic model of hydrates precipitating from a gas steam. This model was used to analyze how the gas hydrate reservoir was formed, how the variations of venting rate crystallized hydrates, and how bottom water temperature variations could destabilize the precipitated hydrate and increase the gas venting rate in the Bush Hill gas vent system in the Gulf of Mexico. If hydrates crystallize from 8 m diameter local vent at a venting rate of 400 kg·m -2 per year, sediments with about 30% porosity in the hydrate stability zone will be completely filled with hydrates in about 425 years, thus the individual channel may be plugged. Accumulated hydrates have more enriched C_ 3 +C_ 4 at the seafloor than at the bottom of gas hydrate stable zone. In the evolution of venting rate from low to fast then low again in a gas vent channel, if hydrate dissolution is much faster than crystallization, about 10% hydrates precipitating during the ramp up period of venting rate will dissociate during the ramp down period of venting rate. If the dissolved hydrate gas can escape from the gas vent system, the seafloor temperature increase will cause about 40% of precipitated hydrates to dissociate within 20 days and the gas venting rate to increase rapidly.
出处 《热带海洋学报》 CAS CSCD 北大核心 2005年第3期38-46,共9页 Journal of Tropical Oceanography
基金 中国科学院知识创新工程重要方向项目(KZCX3-SW-224 KGCX2-SW-309) 国家自然科学基金项目(40472059)
关键词 天然气水合物 成藏动力学 控制因素 海底天然气渗漏系统 gas hydrate kinetic of hydrate reservoir controlling factor marine gas vent system
  • 相关文献

参考文献20

  • 1Dickens G, Runt M S. Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications [J]. J. Geophys. Res. ,1997, 102:773 - 783.
  • 2Hyndman R D, Cavis E E..A mechanism for the formation of methane hydrate and sea floor bottom simulating reflectors by vertical fluid expulsion [J]. J. Geophys. Res. , 1992, 97 : 7025 - 7041.
  • 3Xu W, RuppelC. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments [J]. Journal of Geophys. Res. , 1999,104(B3):5081 - 5095.
  • 4Rempel A W, Buffett B A. Formation and accumulation of gas hydrate in porous media [J]. J. Geophys. Res. , 1997,102 : 10151 - 10164.
  • 5Sassen R, MacDonald I R, Guinasso N L Jr, et al. Bacterial methane oxidation in sea-floor gas hydrate: Significance to life in extreme environments [J]. Geology, 1998,26(9):851 - 854.
  • 6MacDonald I R, Guinasso N L Jr, Sassen R, et al. Gas hydrate that breaches the sea floor on the continental slope of the Gulf of Mexico [J]. Geology, 1994,22(8):699 - 702.
  • 7MacDonald I R, Sager W W, Peccin M B. Gas hydrate and chemosynthetic biota in mounded bathymetry at midslope hydrocarbon seeps:Northern Gulf of Mexico [J]. Marine Geology, 2003,198:133 - 158.
  • 8Cook D, D'Onfro P. Jollier field thrust structure and stratigraphy, Green Canyon Block 184, offshore Louisiana [J].Transactions Gulf Coast Association of Geological Societies, 1991,41:100 - 121.
  • 9Roberts H H, Carney R S. Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope [J]. Economic Geology, 1997, 92 : 863 - 879.
  • 10Sassen R, Losh S L, Cathles III L M, et al. Massive vein-filling gas hydrate: Relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico [J]. Mar. Petrol. Geol. , 2001,18:551 - 560.

二级参考文献40

  • 1Borowski W S. 2004. A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region,offshore southeastern North America. Chemical Geology,205(3 -4) :311 -346.
  • 2Cathles L M and Chen Duo Fu. 2004. A compositional kinetic model of hydrate crystallization and dissolution. Journal of Geophysical Research ( in press).
  • 3Chen Duo Fu and Cathles L M. 2003. A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam: Application to the Bush Hill Vent Site, Green Canyon Block 185, Gulf of Mexico. Journal of Geophysics Research, 108(B1): EPM 7-1 - EPM7-14.
  • 4Chen Duo Fu, Cathles L M and Roberts H H. 2004. The chemical signatures of variable gas venting at hydrate sites. Marine and Petroleum Geology, 21 ( 3 ): 317 - 326.
  • 5Chen Duo Fu, Yuan X L and Cathles L M. 2004. Seep carbonates and their preserved methane oxidzing archaea and sulfide reducing bacterial fossils near Dongsha Island in South China Sea. EOS Trans AGU, 85 (28): WP 75.
  • 6Chi W C, Reed D L, Liu C S and Lundberg N. 1998. Distribution of the bottom - simulating reflector in the offshore Taiwan collision zone. Terrestrial Atmospheric and Oceanic Sciences, 9:779 - 794.
  • 7Chow J, Lee J S, Liu C S, Lee B D and Watkins J S. 2001. A submarine canyon as the cause of a mud volcano - Liuchieuyu Island in Taiwan. Marine Geology, 176:55 -63.
  • 8Chow J, Lee J S, Sun R, Liu C S and Lundberg N. 2000. Characteristics of the bottom simulating reflectors near mud diapirs: offshore southwestern Taiwan. Geo -Marine Letters,20:3 -9.
  • 9Collett T S. 2002. Energy resource potential of natural gas hydrates. AAPG Bulletin, 86( 11 ): 1971 - 1992.
  • 10Cook D and D'Onfro P. 1991. Jolliet Field thrust structure and stratigraphy, Green Canyon Block 184, offshore Louisiana.Transactions Gulf Coast Association of Geological Societies,41:100 - 121.

共引文献23

同被引文献999

引证文献47

二级引证文献740

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部