期刊文献+

中碳和高碳钢中束状马氏体的形成机理 被引量:14

Formation Mechanism of Packet Martensite in Medium and High Carbon Steels
下载PDF
导出
摘要 用光学显微镜和扫描电镜观测了 12种中碳和高碳钢淬火组织形态 ,证明了中碳和高碳钢在高温淬火后形成的束状组织不是板条马氏体 ,而是片状马氏体。从晶体学角度探讨了片状马氏体相互平行、呈束状生成的原因。通过改变奥氏体的均匀切变方向和马氏体片晶所平行的奥氏体方向 (即双改变 ) ,来实现邻接马氏体片之间保持孪晶关系 ,以降低形核功和核长大功。马氏体相变的孪晶界面束状机制是细片马氏体相变的普遍方式 ,即在同一惯习面上 ,通过在已形成晶核的旁边生成具有孪晶关系的新晶核 ,以降低界面能和应变能 ,导致形成束状薄片马氏体。 The as-quenched microstructures of twelve commercial steels were observed using optical microscope and scanning electron microscope. It is found that the packet martensite formed in medium and high carbon steels quenched from high temperature is not lath martensite, but rather fine plate martensite. The formation mechanism of the packet martensite was explored in detail from martensite crystallography. Remaining the twin relationship between the adjacent martensitic plates may significantly lower the free energy barrier of martensite nucleation and growth, which may be realized through changing the direction of homogeneous shear of austenite and the austenitic direction, which is parallel with martensite platelet (i.e. double alteration). The packet mechanism of twin boundary proposed is a common fashion of transformation of fine plate martensite, that is to say, a new nucleus with twin relationship will form at two sides of the old nucleus along the same habit plane for diminishing remarkably the boundary energy and the volume strain energy, then forming packet plate martensite.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2005年第1期48-52,共5页 Transactions of Materials and Heat Treatment
基金 中国博士后科学基金 (2 0 0 4 0 35647)
关键词 马氏体 片状马氏体 马氏体相变 束状机制 晶体学 Crystallography Martensite Microstructure Optical microscopy Quenching Scanning electron microscopy
  • 相关文献

参考文献22

  • 1Krauss G. Martensite in steel: strength and structure[J]. Mater Sci Eng, 1999, A273-275: 40.
  • 2Krauss G, Marder R. The morphology of martensite in iron alloys[J]. Metall Trans, 1971, 2A: 2343.
  • 3牧正志 田村今男.铁系合金马氏体的形态和亚结构[J].日本金属学会会报,1974,13(5):329-329.
  • 4Owen W S. High Strength Materials[M]. New York: Wiley, 1965, 169.
  • 5牧正志 田村今男.板条马氏体的形态和亚结构[J].铁と钢,1981,67(7):852-852.
  • 6Mschasitlivtsev V, Rodionov D P, Khlebnikova Y V, Yakorleva I L. Peculiarity of structure and crystallography of plastic deformation of lath martensite in structural steels[J]. Mater Sci Eng, 1999, A273-275: 439.
  • 7Shtansdy D V, Nakai K, Ohmor Y. Crystallography and structural evolution during reverse transformation in an Fe-17Cr-0.5C tempered martensite[J].Acta Mater, 2000, 48(8): 1679.
  • 8Ohmura I, Hara T, Tsuzaki K. Relationship between nanohardness and microstructures in high-purity Fe-C as-quenched and quench-tempered martensite[J]. J Mater Research, 2003,18(6): 1465.
  • 9Furuhara T, Morito S, Mark T. Morphology, substructure and crystallography of lath martensite in Fe-C alloy[ J]. J De Physique IV, 2003,112 (Part 1 ):255.
  • 10Morito S, Tanaka H, Konishi R. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Mater, 2003, 51:1789.

共引文献1

同被引文献84

引证文献14

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部