期刊文献+

复共线Gauss-Markov模型参数估计的最小描述长度方法 被引量:2

Parameters Estimation of Multi-Collinearity Gauss-Markov Model Based on Minimum Description Length
下载PDF
导出
摘要 Gauss-Markov模型是多元数据分析处理工作中常用的模型,其参数估计与筛选一直是研究的热点。当Gauss-Markov模型的设计矩阵存在复共线性时,常用主成分分析方法来筛选和估计其参数,消去它们之间的复共线性,提高估计准确度。基于最小描述长度原理,提出了一种新的参数筛选估计方法。该方法应用最小描述长度原理选择主成分作为参数,其参数的可靠性较高;从信息的角度看,这种方法的信息损失最小。最后实例说明了该方法的有效性和可靠性。 Gauss-Markov model is frequently used in multivariate data analysis and processing, and its parameter estimation is always a hot issue. Principal component analysis is usually used to select and estimate the parameters when there is multi-collinearity in the coefficient matrix of Gauss-Markov model. Based on information theory and minimum description length (MDL) principle, a novel parameter estimation and selection approach are presented. This new approach, with the help of MDL, selects principal components as the reasonable parameters. The parameters obtained by this way are more reliable, and the information loss can be reduced ,to the minimum from the viewpoint of information theory. In the end, the validity and reliability of the proposed approach are illustrated by an example.
出处 《青岛大学学报(工程技术版)》 CAS 2005年第1期20-23,共4页 Journal of Qingdao University(Engineering & Technology Edition)
基金 山东省基础地理信息与数字化技术重点实验室开放基金资助项目(SD2003-10)山东理工大学科研基金资助项目(2004KJM10)
关键词 最小描述长度 多元数据分析 Gauss—Markov模型 参数估计 复共线性 信息损失 minimum description length multivariate data analysis Gauss-Markov model parameters estimation multi-collinearity information loss
  • 相关文献

参考文献6

  • 1靳奉祥,王同孝,独知行.变形观测中的模式识别问题[J].中国有色金属学报,1997,7(3):18-21. 被引量:24
  • 2归庆明,黄维彬,张建军,易维勇.秩亏Gauss-Markov模型参数的有偏估计[J].测绘学报,1997,26(3):261-267. 被引量:4
  • 3Johnson A,et al. Applied Multivariate Statistical Analysis (4th Ed.)[M].USA:Prentice Hall Inc,1998.
  • 4Rissanen J. Modeling by Shortest Data Description[J]. Automatica,1978,14(15):465-471.
  • 5Grünwald P. Model Selection Based on Minimum Description Length[J]. Journal of Mathematical Psychology,2000,44(1):133-152.
  • 6Barron A,Rissanen J,Yu B. The Minimum Description Length Principle in Coding and Modeling[J]. IEEE Transcations on Information Theory,1998,44 (6):2743-2760.

二级参考文献27

  • 1靳奉祥,曾卓乔,徐斌.GM模型的几何性质及统计检验[J].中国有色金属学报,1996,6(2):1-6. 被引量:2
  • 2陶本藻,自由网平差与变形分析,1984年
  • 3Xu Peiliang,Manuscr Geod,1994年,19期,8页
  • 4归庆明,Presented Paper of the IAG General Meeting in Beijing,1993年
  • 5归庆明,Manuscr Geod,1993年,18卷,1页
  • 6黄维彬,近代平差理论及其应用,1992年
  • 7杨虎,高校应用数学学报,1989年,4期,74页
  • 8夏结来,数理统计与应用概率,1988年,3期,21页
  • 9刘丁酉,武汉测绘科技大学学报,1988年,13期,90页
  • 10Huang Yidong,Presented Paper of the ISPRS Comm V Symposium in Ottawa,1987年

共引文献26

同被引文献13

  • 1Vibhor Kumar,Jukka Heikkonen,Peter Engelhardt,Kimmo Kaski.Robust filtering and particle in micrograph images towards 3D reconstruction of purified proteins with cryo-electron microscopy[J].Journal of Structural Biology,2003.
  • 2Jorma Rissanen.MDL Denoising[J].IEEE transactions on information theory,2000,46.
  • 3Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad Sci USA, 1990, 87(24):9868-72.
  • 4Friston KJ, Holmes AP, Worsley KJ. Statistical parametric maps in functional imaging:a general linear approach. Human Brain Mapping, 1994, 2(4):189-210.
  • 5McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ. Analysis of fMRI data by blind separation into spatial independent component analysis. Human Brain Mapping, 1998, 6(3):160-188.
  • 6Zhang J, Tuo X, Yuan Z, Liao W, Chen H. Analysis of fMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach. IEEE Trans. on Biomedical Engineering, 2011, 58(11):3184-3196.
  • 7Meyerbase A, Saalbach A, Lange O, Wismuller A. Unsupervised clustering of fMRI and MRI time series. Biomedical Signal Processing and Control, 2007, 2(4):295-310.
  • 8谢小平等.fMRI脑功能成像信号的聚类分析.2007全国复杂系统研究论坛.北京:中国高等科学技术中心,2005.
  • 9Geert Verdoolaege, Yves Rosseel. Activation detection in event-related fMRI through clustering of wavelet distribution. Proc. of 2010 IEEE 17th International Conference on Image Processing. Hong Kong. IEEE. 2010. 4393-4396.
  • 10Yao SN, Zeng WM, Wang NZ, Chen L. Validating the performance of one-time decomposition for fMRI analysis using ICA with automatic target generation process. Magnetic Resonance Imaging, 2013, 31(6):970-975.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部