期刊文献+

Analysis of time and frequency synchronization error for wireless systems using OFDM 被引量:6

Analysis of time and frequency synchronization error for wireless systems using OFDM
原文传递
导出
摘要 Due to frequency-selective and time-variant property of wireless channel together with additive noise and mismatch of oscillators between transmitter and receiver, there are always time and frequency synchronization errors in a practical OFDM system. To investigate the effect of the two kinds of errors on system performance, the average normalized interference power (NIP) is defined. A simple supper bound for NIP caused by time synchronization error (TSE) and the tighter upper bound for NIP resulting from frequency synchronization error (FSE) are derived independently. Simulations in typical short wave (SW) and medium wave (MW) channels further verify the correctness and tightness of these upper bounds. They actually provide good approximations to NIPs. Moreover, the upper bound for NIP resulting from FSE is tighter than traditional upper bound. Additionally, a new solution is proposed to relax the precision requirement for time synchronization algorithm, which can achieve a better tradeoff between time synchronization precision and bandwidth efficiency. These upper bounds will be useful in developing and choosing time and frequency synchronization algorithms in OFDM system to achieve a specific NIP value for a given channel condition.
出处 《Science in China(Series F)》 2005年第3期379-396,共18页 中国科学(F辑英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.60496311).
关键词 OFDM time synchronization error frequency synchronization error normalized interference power upper bound. OFDM, time synchronization error, frequency synchronization error, normalized interference power, upper bound.
  • 相关文献

参考文献1

二级参考文献12

  • 1[1]Foschini, G. J., Gans, M. J., On limits of wireless communications in a fading environment when using multiple antennas, Wireless Personal Communications, 1998, 6:311-335.
  • 2[2]Telatar, I. E., Capacity of multi-antenna Gaussian channels, European Transactions on Telecommunications,1999, 10(6): 585-595.
  • 3[3]Raleigh, G. G., Cioffi, J. M., Spatio-temporal coding for wireless communication, IEEE Trans. Comm., 1998,46(3): 357-366.
  • 4[4]Foschini, G. J., Layered space-time architecture wireless communication in a fading environment when using multi-element antennas, Bell Labs Tech. J., 1996, 41-59.
  • 5[5]Lupas, R., Verdu, S., Linear multiuser detectors for synchronous code-division multiple-access channels,IEEE Trans. Inform. Theory, 1989, 35(1): 123-136.
  • 6[6]Madhow, U., Honig, M., MMSE interference suppression for direct sequence spread spectrum CDMA, IEEE Trans. Comm., 1994, 42(12): 3178-3188.
  • 7[7]Varanasi, M. K., Decision feedback multiuser detection: A systematic approach, IEEE Trans. Inform. Theory,1999, 45(1): 219-240.
  • 8[8]Varanasi, M. K., Group detection for synchronous Gaussian code-division multiple-access channels, IEEE Trans. Inform. Theory, 1995, 41(4): 1083-1096.
  • 9[9]Luo, J., Pattipati, K. R., Willett, P. K. et al., Near-optimal multiuser detection in synchronous CDMA using probabilistic data association, IEEE Communication Letter, 2001, 5(9): 361-363.
  • 10[10]Berrou, C., Glavieux, A., Thitimajshima, P., Near Shannon limit error-correcting coding and decoding:Turbo-codes, in Proceedings of IEEE International Conference on Communications (ICC'93), Geneva, Switzerland: IEEE Communication Society, 1993, 1064-1070.

共引文献1

同被引文献55

  • 1杨倩,陶然,王越,陈恩庆.基于分数阶Fourier变换的MIMO-OFDM系统及最优阶次选择[J].中国科学(F辑:信息科学),2009,39(7):767-775. 被引量:2
  • 2YU Xiaoyan WANG Jiaqing YANG Luxi HE Zhenya.Doubly selective fading channel estimation in MIMO OFDM systems[J].Science in China(Series F),2005,48(6):795-807. 被引量:4
  • 3Deng Kai Tang Youxi Lei Xia Li Shaoqian.ESTIMATION OF CARRIER FREQUENCY OFFSETS FOR MIMO SYSTEMS WITH DISTRIBUTED TRANSMIT ANTENNAS[J].Journal of Electronics(China),2007,24(4):455-461. 被引量:2
  • 4Wang Huiqi,Ma Hong.MIMO OFDM systems based on theoptimal fractional fourier transform. Wireless Personal Communications . 2010
  • 5McClellan J H,Parks TW.Eigenvalue and eigenvector de-composition of the discrete Fourier transform. IEEETrans on Audio Electroacoust . 1972
  • 6Tao Ran,Li Yanlei,Wang Yue.Short-time fractional fouriertransform and its applications. IEEE Trans on SignalProcessing . 2010
  • 7Pitakdumrongkija B,Fukawa K,Suzuki H.MIMO-OFDMprecoder for minimizing BER upper bound of MLD underimperfect CSI. IEEE Interrational Conference on Com-munications,ICC’’08 . 2008
  • 8IEEE 802 Standard Working Group.Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Further Higher Data Rate Extension in the 2.4 GHz Band. IEEE Standard IEEE 802.11g . 2003
  • 9Wireless LAN medium access control (MAC) and physical (PHY) layer specifications High speed Physical Layer in the 2.4 GHz Band. IEEE Std 802.11b-1999 . 1999
  • 10Pollet T,van Bladel M,Moeneclaey M.BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Transactions on Communications . 1995

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部