期刊文献+

解非线性两层规划问题的新的遗传算法及全局收敛性 被引量:22

A New Genetic Algorithm for Nonlinear Bilevel Programming Problem and Its Global Convergence
原文传递
导出
摘要 针对两层规划问题本质上的非凸性和不可微性给其数值求解带来极大困难,特别是求非线性两层规划问题的全局最优解,而遗传算法不受这些因素的限制,设计了一种新的有效的遗传算法来解决非线性两层规划问题.该算法充分考虑了两层规划问题的结构特点,使遗传算子更加有效,并且易于产生好的后代. It is very difficult to determine its solution of bilevel programming problem because of its inherent nonconvexity and nondifferentiability. In particular, it is more difficult to get the global optimal solution of nonlinear bilevel programming problem. But Genetic algorithm has no restrictions on functions involved such as differentiability, convexity and so on. So a new kind of the effective Genetic algorithm for nonlinear bilevel programming problem is presented. This algorithm sufficiently utilizes the specific structure of the problem, such that genetic operator is more effective and better offspring can be produced easily. The theoretical analysis and the numerical simulations show that the new algorithm is used not only simply and easily but also effectively.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第3期62-71,共10页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(60171045 60374063)
关键词 两层规划 递阶优化 遗传算法 全局优化 bilevel programming hierarchical optimization genetic algorithm global optimization
  • 相关文献

参考文献13

  • 1Jonathan F Bard. Practical Bilevel Optimization Algorithms and Application[M]. The Netherlands: Kluwer Academic Publishers, 1998. 193-386.
  • 2Zeynep H. Gümüs, Christodoulos A Floudas. Global optimization of nonlinear bilevel programming problems[J]. Journal of Global Optimization, 2001, 20: 1-31.
  • 3Mahyar A Amouzegar. A global optimization method for nonlinear bilevel programming problems[J]. IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics, 1999, 29(6): 771-777.
  • 4Olav K. Foundations of Modern Probability[M]. New York : Springer-Verlag , 1997.
  • 5Patrick B. Convergence of Probability Measures[M]. New York:Wiley, 1999.
  • 6Thomas A Edmunds, Jonathan F Bard. Algorithms for nonlinear bilevel mathematical programs[J]. IEEE Trans. on Systems, Man, and Cybernetics, 1991, 21(1): 83-89.
  • 7郭崇慧,唐焕文.演化策略的全局收敛性[J].计算数学,2001,23(1):105-110. 被引量:36
  • 8E Aiyoshi, K Shimizu. A solution method for the static constrained Stackelberg problem via penalty method [J]. IEEE Transactions on Automatic Control, 1984, 29(12):1111-1114.
  • 9H I Calvete, C Galé. The bilevel linear/linear fractional programming problem [J]. European Journal of Operational Research, 1999, 114(1): 188-197.
  • 10J.V.Outrata. On the numerical solution of a class of Stackelberg problems[J]. Zeitschrift Fur Operation Research, 1990, 34: 255-278.

二级参考文献13

  • 1徐宗本,李国.解全局优化问题的仿生类算法(I)—模拟进化算法[J].运筹学杂志,1995,14(2):1-13. 被引量:39
  • 2仲伟俊,徐南荣.两层决策的波尔兹曼机方法[J].系统工程学报,1995,10(1):7-13. 被引量:10
  • 3刘勇 康力山.非数值并行算法(第二册)——遗传算法[M].北京:科学出版社,1997..
  • 4陈宝林.最优化理论与算法[M].北京:清华大学出版社,1998..
  • 5李国杰.计算智能:一个重要的研究方向.智能计算机基础研究’94[M].北京:清华大学出版社,1994..
  • 6梁之舜 邓集贤 等.概论论与数理统计[M].北京:高等教育出版社,1988..
  • 7陈开周.最优化计算方法[M].西安:西安电子科技大学,1998.103-151,239-246.
  • 8刘红英.多层规划的理论与算法研究[M].西安:西安电子科技大学,2000..
  • 9李国杰,智能计算机基础研究’94,1994年
  • 10梁之舜,概率论与数理统计,1988年

共引文献47

同被引文献236

引证文献22

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部