摘要
与经典水平下的研究不同,研究了(2+1)维含非AbelChern Simons项的非线性σ模型量子水平的分数自旋性质.根据约束Hamilton系统的Faddeev Senjanovic(FS)路径积分量子化方案,对该系统进行量子化,由量子Noether定理给出了量子守恒角动量,说明了在量子水平上该系统仍具有分数自旋的性质.
The property of fractional spin of O(3) non-linear sigma model with non-Abel Chem-Simons term at the quantum level is studied. This formulation is different from the classical theories. According to the rule of path integral quantization for a constrained Hamiltonian system in Faddeev-Senjanovic scheme,the system is quantized. Based on the quantal Noether theorem, the quantal conserved angular momentum is obtained and the fractional spin at the quantum level of this system is presented.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2005年第6期2611-2613,共3页
Acta Physica Sinica