期刊文献+

最优潮流算法综述 被引量:26

A summary of optimal power flow
下载PDF
导出
摘要 最优潮流是一个典型的非线性优化问题,且由于约束的复杂性使得其计算复杂,难度较大。虽然人们已经提出了许多种方法,并且在部分场合有所应用,但是要大规模实用化,满足电力系统的运行要求还有不少问题要解决。此文总结了现今有关最优潮流的几个方面,从优化方法和所遇到的新问题出发,对主要的优化方进行了介绍和简要的分析,以供从事无功优化的人员参考,同时还对最优潮流的进一步发展做了一些探讨。 Optimal power flow is a method that makes power system running with economy and security by changing the values of control variables. It is hard to realize because of the complexity of mathematical modeling and security constraints. This paper summarizes several main aspects of optimal power flow nowadays and discusses some of its further development.
作者 万黎 袁荣湘
出处 《继电器》 CSCD 北大核心 2005年第11期80-87,共8页 Relay
关键词 最优潮流 线性规划 牛顿法 内点法 遗传算法 并行算法 optimal power flow linear programming Newton method interior method genetic method parallel method
  • 相关文献

参考文献50

  • 1Carpentier J. Contribution a' letude du Dispatching Economique[ J]. Bulletin de la Societe Francaise des Electriciens, 1962,3:431- 447.
  • 2Wells D W. Method for Economic Secure Loading of a Power System[ J]. Proceedings of IEEE, 1968,115 (8):606-614.
  • 3Shern C M, Laughton M A. Power Systen Load Scheduling with Security Constraints Using Dual Linear Programming[ J]. Proceedings of IEEE, 1970, 117 ( 1 ):2714-2127.
  • 4Stott B, Marinho J L. Linear Programming for Power System Network Security Applications [ J ]. IEEE Trans on Power Apparatus and Systems, 1979,117 ( 1 ): 2714-2127.
  • 5Santos-Neito M, Quintana V H. Linear Reactive Power Studies for Longitudinal Power Systems [ A ]. 9th PSCC Conference. 1987. 183-787.
  • 6amandur K R C, Chenoweth R D. Optimal Control of Reactive Power Flow for Improvements in Voltage Profiles and for Real Power Loss Minimization [ J ]. IEEE Trans on Power Apparatus and Systems, 1981, PAS-100:3185-3193.
  • 7Rama S, Rama I K, Haraharan C S. Optimal Reactive Power Allocation for Improved System Performance [ J ].IEEE Trans on Power Apparatus and Systems, 1981,PAS-100:3185-3193.
  • 8Mamandur K R C, Chenoweth R D. Optimal Control of Reactive Power Flow for Improvements in Voltage Profiles and for Real Power Loss Minimization [ J ]. IEEE Trans on Power Apparatus and Systems, 1981, PAS-100:3185-3193.
  • 9Mamandur K R C, Chenoweth R D. Optimal Control of Reactive Power Flow for Improvements in Voltage Profiles and for Real Power Loss Minimization [ J]. IEEE Trans on Power Apparatus and Systems, 1981, PAS-100:3185-3193.
  • 10Bartholomew-Biggs M C. Recursive Quadratic Programming Methods Based on the Augmented Lagrangian[ J].Mathematical Programming Study, 1987,31:21-41.

二级参考文献69

  • 1韦柳涛,曾庆川,姜铁兵,虞锦江,黄定疆.启发式遗传基因算法及其在电力系统机组组合优化中的应用[J].中国电机工程学报,1994,14(2):67-72. 被引量:27
  • 2刘天琪,滕福生.电网在线安全分析的并行处理方法[J].成都科技大学学报,1996(1):29-35. 被引量:1
  • 3郝玉国,张靖,于尔铿,刘广一.最优潮流的实用化研究[J].中国电机工程学报,1996,16(6):388-391. 被引量:18
  • 4韩晓言,韩祯祥.电力系统暂态稳定分析的内在并行算法研究[J].中国电机工程学报,1997,17(3):145-148. 被引量:17
  • 5Batut J, Renaud A. Daily generation scheduling optirnization with transmission constraints: a new class of algorithms[J].IEEE Trans on Power Systems, 2000, 7(3): 982 -989.
  • 6Balho H Kim, Ross Baldick. Coarse-grained distributed optimal power flow. IEEE Trans on Power Systems, 1997, 12 (2): 932- 939.
  • 7Kim B H, Baldick R. A comparison of distributed optimal power flow algorithms[J].IEEE Trans on Power Systems, 2000,15(2):599-604.
  • 8Hur D, Park J K B, Kim H. Evaluation of convergence rate in the auxiliary problem principle for distributed optimal power flow[J]. IEE Proceedings-Generation, Transmission and Distribution, 2002, 149(5): 525-532.
  • 9Javier Contreras, Arturo Losi, Mario Russo, et al, Simulation and evaluation of optimization problem solutions in distributed energy rnanagement systems[J], IEEE Trans on Power Systems, 2002, 17(1): 57-62.
  • 10Hur D, Park J K, Kim B H. On the convergence rate improvement of mathematical decomposition technique on distributed optimal power flow[J]. Int J of Electrical Power & Energy Systems, 2003;25(3): 31-39.

共引文献355

同被引文献260

引证文献26

二级引证文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部