期刊文献+

最佳滑动窗口编码法及其在快速模幂乘中的应用 被引量:1

Optimal Sliding Window Coding Method and Its Application in Fast Modular Power Multiplication
下载PDF
导出
摘要 大数模幂乘是实现RSA、E1Gamal、DSA等公钥算法的基本运算,其运算速度对这些算法的实现起着重要的作用.首先对基于滑动窗口的模乘算法作了部分改进大大减少了空间复杂度;给出了最佳窗口长度的计算方法.然后将改进后的算法推广到模幂运算.通过分析得知,当RSA的加密指数e的长度为512位时,该算法平均只需要做616次大数模乘便可实现A×BemodN运算.最后用滑动窗口法与二进制法、加法链法、Yacobi法等其他模幂乘算法进行了比较,并指出滑动窗口法和Yacobi法是目前最好的模幂乘算法. Modular power and modular multiplication are the basic algorithms for implementing the public key algorithms such as RSA, ElgGamal and DSA etc. whose speed is the key and decided by the above. Firstly, the paper improved the sliding window algorithm for modular multiplication by largely reducing the space complexity and provided the algorithm for computing the length of optimum window. Secondly the paper generalized the method to fast modular power. Through analysis, this algorithm needs only 616 times large integer number multiplication to compute A×Be mod N, if the length of the encryption exponent of RSA is 512 bits. Lastly, the paper compared the sliding window algorithm with other algorithm such as Binary Method, Addition Chain Method and Yacobi Method etc. and pointed out that sliding window method and Yacobi Method are the best modular power multiplication at present.
出处 《南昌大学学报(工科版)》 CAS 2005年第2期84-87,92,共5页 Journal of Nanchang University(Engineering & Technology)
关键词 大数模幂乘 算法 滑动窗口编码 large integer modular power multiplication algorithm sliding window coding
  • 相关文献

参考文献5

  • 1刘宏伟,王昭顺,班晓娟.RSA公钥密码体制的实现研究[J].计算机工程与应用,2002,38(17):52-54. 被引量:19
  • 2Downey P, Leony B, Sethi R. Computing Sequences with Addition Chains[J]. SIAMJ Comput, 1981,10(3) :638 -646.
  • 3P ErdOs. Remarks on Number Theory Ⅲ, on Addition Chains[J]. Acta Arith, 1960, V1:77 - 81.
  • 4Phillips B J, Burgess N. Implementing 1024 - bits RSA exponentiation on a 32- bits processor core[ J ]. IEEE International Conference on Application Specific Systems,Architecture, and Processors (ASAP00).
  • 5Yacobi Y. Exponentiating Faster with Addition Chains[ A ]. Advances in Eurocypt ' 90 [ C ]. New York : Springer- Verlag, 1990:222 - 229.

二级参考文献1

  • 1黄铠 徐志伟.可扩展并行计算技术、结构与编程[M].北京:机械工业出版社,2000..

共引文献18

同被引文献5

  • 1Hayami A,Kuroiwa T.Sliding window coding technique for the variable length modulations[C]//lnternational Symposium on Optical Memory and Optical Data Storage Topical Meeting, 2002: 338-340.
  • 2Shi Jiang-hong, Zhou Ting.A novel fast exponentiation algorithm for encryption[C]//IEEE International Workshop International Conference on Computational Intelligence and Multimedia Applications, 2007: 245-248.
  • 3Su F F, Hwang T.Comments on iterative modular multiplication without magnitude comparison[C]//Proceeding of The Sixth National Conference on Information Security,Taichung,Taiwan, 1996: 21-22.
  • 4Garg R, Vig R.An efficient montgomery multiplication algorithm and RSA cryptographic processor[J].IEEE Computer Society,2007,2:188-195.
  • 5刘宏伟,王昭顺,班晓娟.RSA公钥密码体制的实现研究[J].计算机工程与应用,2002,38(17):52-54. 被引量:19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部