摘要
提出了一种新的混沌神经元模型,该神经元的激励函数由Gauss和Sigmoid两种函数加和组成的非单调函数构成.通过分岔图及Lyapunov指数的计算,分析了其动力学特性.基于该模型,构造了一种新的具有暂态混沌特性的神经网络,该网络在寻优过程中同时衰减两种退火机制实现混沌退火.通过将特征点匹配问题转化为优化问题,该网络可以实现对目标识别问题的求解.仿真实验验证了该算法的有用性和有效性.
<Abstrcat>We give a novel chaotic neuron model whose activation function is composed of Gauss and Sigmoid function.It is shown that the model may exhibit a complex dynamic behavior.The most significant bifurcation processes,leading to chaos,are investigated through the computation of the Lyapunov exponents.Based on this neuron model,we propose a novel chaotic neural network,which realizes simulated chaotic anneal by decaying two parameters simultaneously.Transforming the feature points matching problem into the optimization problem,the network can complete the function of the object recognition.The simulation results prove the validity of the algorithm.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2005年第5期868-870,共3页
Acta Electronica Sinica
基金
国家自然科学基金(No.10402003)
北京理工大学基础研究基金(No.BIT UBF 200301F10)
关键词
混沌
神经网络
优化
特征点匹配
chaos
neural network
optimization
feature points matching