期刊文献+

一款RSA模乘幂运算器的设计与实现 被引量:11

The Design and Implementation of a RSA Modular Exponentiator
下载PDF
导出
摘要  通讯技术的高速发展需要更高性能的密码处理设备.本文介绍的RSA模乘幂运算器,采用蒙哥马利模乘法算法和指数的从右到左的二进制方法,并根据大整数模乘法运算和VLSI实现的要求进行改进,提供高速RSA模乘幂运算能力.该RSA运算器在其模乘法器中使用了进位保留加法器结构以避免长进位链.我们提出了信号多重备份的方法,解决大整数运算结构中关键信号广播带来的负载问题. <Abstrcat>The rapid advance in communication technology brings a request for cryptoprocessors of higher performance.In the design of the RSA modular exponentiator,the Montgomery modular multiplication algorithm and the right-to-left binary method are used and modified considering large-bit modular multiplication and VLSI implementation.A Carry Save Adder structure is used in the modular multiplier,to avoid the long carry propagation.We propose a Signal Multi-Backup strategy to resolve the problem of large loads that are caused by the signal broadcasting of large-bit operation structures.
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第5期923-927,共5页 Acta Electronica Sinica
关键词 蒙哥马利算法 模乘法 模乘幂 RSA 公开密钥密码系统 montgomery algorithm modular multiplication modular exponentiation RSA public-key cryptography
  • 相关文献

参考文献17

  • 1W Diffie,M E Hellman.New directions in cryptography[J].IEEE Transactions on Information Theory,1976,22(6):644-654.
  • 2R L Rivest,A Shamir,L Adleman.A method for obtaining digital signatures and public-key cryptosystems[J].Communications of the ACM,1978,21(2):120-126.
  • 3D E Knuth.The Art of Computer Programming Volume 2:Seminumerical Algorithms (Third Edition)[M].北京:清华大学出版社,2002:461-481.
  • 4P L Montgomery.Modular multiplication without trial division[J].Mathematics of Computation,1985,44(170):519-521.
  • 5C D Walter.Montgomery exponentiation needs no final subtractions[J].Electronics Letters,1999,35(21):1831-1832.
  • 6E F Brickell.A fast modular multiplication algorithm with application to two-key cryptography[A].Chaum et al.Advances in Cryptology-CRYPTO'82[C].New York:Plenum,1983.51-60.
  • 7S E Eldridge,C D Walter.Hardware implementation of Montgomery's modular multiplication algorithm[J].IEEE Transactions on Computers,1993,42(6):693-699.
  • 8C -H Wu,J -H Hong,C -W Wu.RSA cryptosystem design based on the Chinese remainder theorem[A].Proceedings of Asia South Pacific Design Automation Conference 2001 (ASP-DAC 2001)[C].New York:IEEE press,2001.391-395.
  • 9T -W Kwon,et al.Two implementation methods of a 1024 bit RSA cryptoprocesor based on modified Montgomery algorithm[A].Proceedings of the 2001 IEEE International Symposium on Circuits and Systems (ISCAS 2001)[C].New York:IEEE press,2001,4:650-653.
  • 10A Kondracki.The Chinese remainder theorem[J].Formalized Mathematics,1997,6(4):573-577.

同被引文献77

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部