摘要
通过对光栅制作过程的优化设计 ,解决了光纤光栅温度稳定性、纹波系数、带宽、偏振模色散补偿等关键技术 ,所制作光纤光栅已经达到温度系数小于 0 0 0 0 5nm ℃ ,带宽大于 1 4nm ,纹波系数小于 5 0ps ,色散量超过 - 10 0 0ps nm的先进水平 .采用琼斯矩阵本征值法较精确地测量了光栅的偏振模色散 ,并对其进行了补偿 ,光纤光栅色散补偿器的偏振模色散由补偿前的 9 14 0 6ps改善为补偿后的 0 15 2 1ps.在此基础上 ,成功地建立了一个稳定可靠、速率为 4 0Gb s ,传输链路为 12 2kmG6 5 2光纤并采用 2个宽带啁啾光纤光栅作为色散补偿器件的光时分复用实验系统 ,传输部分的功率代价仅为 1 4dB .
By optimizing the fabrication process of the chirped optical fiber Bragg grating (FBG), some key problems of FBG are solved, such as the temperature stability, time delay ripple coefficient, bandwidth, compensation of polarization mode dispersion (PMD), and so on. The FBG we fabricated can attain the temperature coefficient less than 0.0005 nm/degrees C, its bandwidth is bigger than 1.4 nm, time delay ripple is less than 50 ps, and the dispersion is higher than - 1000 ps/nm. The average PMD of the FBG dispersion compensator is measured by the Jones matrix eigenvalue method, and is compensated. Its PMD is improved from 9.1406 ps to 0.1521 ps. With dispersion compensation by two wide-band FBGs we fabricated, we have implemented a 40 Gb/s 122 km conventional single-mode optical fiber (G652) systems, with a power penalty being only 1.4 dB.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2005年第4期1630-1635,共6页
Acta Physica Sinica
基金
国家高技术研究发展计划 (批准号 :2 0 0 4AA3 1G2 0 0 )
国家自然科学基金 (批准号 :60 4770 17)
北京市自然科学基金 (批准号 :40 5 2 0 2 3 )
霍英东教育基金 (批准号 :910 62 )资助的课题~~