期刊文献+

基于覆盖运算挖掘最小规则集 被引量:1

Mining the Smallest Association Rule Set Based on Cover Operations
下载PDF
导出
摘要 文中提出了一种挖掘最小规则集的算法,通过对最小规则集运用覆盖运算,能够得到所有的关联规则。最小规则集中的规则称为基规则。所有的关联规则都可以通过覆盖最小的关联规则集得到。 An efficient algorithm for mining the smallest association rule set is proposed. Association rules in the smallest rule set are called key rules. All association rules can be derived by covering the smallest association rule set.
出处 《计算机工程与科学》 CSCD 2005年第6期65-66,69,共3页 Computer Engineering & Science
关键词 关联规则 覆盖运算 频繁闭项集 频繁基项集 基规则 association rule cover operation frequent closed itemset frequent key itemset key rule
  • 相关文献

参考文献6

  • 1Jiuyong Li, Hong Shen, Rodney Topor. Mining the Smallest Association Rule Set for Predictions[A]. Proc of the 2001IEEE Int'1 Conf on Data Mining[C]. 2001. 361-368.
  • 2王新,王湄生.关联规则挖掘中的关联推理[J].云南民族学院学报(自然科学版),2001,10(3):373-375. 被引量:4
  • 3Doug Burdick, Manuel Calimlim, Johannes Gehrke. A Maximal Frequent Itemset Algorithm for Transactional Databases[A]. Proc of the 17th Int'l Conf on Data Engineering[C].443-452.
  • 4Mohammed J Zaki. Generating Non-Redundant Association Rules[A]. Proc of the 6th ACM SIGKDD Int' l Conf on Knowledge Discovery and Data Mining[C]. 2000. 34-43.
  • 5Li Li, Donghai Zhai, Fan Jin. A Graph-Based Algorithm for Frequent Closed Itemsets Mining[A]. Systems and Information Engineering Design Symp[C]. 2003. 19-24.
  • 6Viet Phan-Luong. The Representative Basis for Association Rules[A]. Proc of the 2001 IEEE Int'l Conf on Data Mining[C]. 2001. 639-640.

二级参考文献6

  • 1[1]Agrawal.R,Imielinski. T, Swami. A.Mining association rules between sets of items in large databases. In:Proceedinga of the ACM SIGMOD Conference on Management of Data[M]. Washington D. C,1993.207~216
  • 2[2]Agrawal. R, Srikant. R.Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on Very Large Databases[M]. Santiago, Chile,1994.478-499
  • 3[3]Pasquier. N,Bastide. Y,Taouil. R and Lakhal. L. Efficient mining of association rules using closed itemset lattices[J]. Information Systems 24(1): 1999,25- 46
  • 4[4]Srikant. R,Agrawal. R.Mining generalized association rules[J]. Future Generation Computer System ,1997,(13):161-180
  • 5[5]Yugami. N, Ohto. Y, Okamoto. S. Fast discovery of interesting rules.In:Proceeding of the 4th Pacific-Asia Conference[M].PAKDD2000, Japan,2000.17-27
  • 6[6]Chen. M.-S.,Han. J and Yu.P.S. Data mining:An overview from a datahase perspective[J].IEEE Transactions on Knowledge and Data Engineering, 1996,8(6):866-883

共引文献3

同被引文献9

  • 1谢翠华,沈洁,李云,程伟,林颖.一种基于FP-tree的最小预测集获取新算法[J].计算机工程,2006,32(6):82-85. 被引量:1
  • 2姜保庆,李建,徐扬.布尔关联规则集的结构[J].河南大学学报(自然科学版),2006,36(1):88-90. 被引量:2
  • 3Mohammed J Z. Generating non-redundant association rules[C]//Proc of the 6th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. New York: ACM Press,2000:34-43.
  • 4范明,孟小峰.数据挖掘概念与技术[M].北京:人民邮电出版社,2007.
  • 5Li Jiuyong, Shen Hong, Topor R. Mining the smallest association rules set for predictions[C]//Proc of the 2001 IEEE Int'l Conf on Data Mining. California,USA,2001:361-368.
  • 6Pei J, Han J, Mao R. Closet: an efficient algorithm for mining frequent closed itemsets[C]//ACM SIGMOD'00. New York: ACM Press, 2000:11-20.
  • 7范明,范宏建.数据挖掘导论[M].北京:人民邮电出版社,2006.
  • 8杨越越,翟延富,董祥军,李刚,郭跃斌.一种改进的冗余规则修剪方法[J].郑州大学学报(理学版),2007,39(4):134-136. 被引量:3
  • 9王新,王湄生.关联规则挖掘中的关联推理[J].云南民族学院学报(自然科学版),2001,10(3):373-375. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部