期刊文献+

洞穴逆散射问题解的惟一性与局部稳定性 被引量:1

原文传递
导出
摘要 时谐电磁波入射到基面内任意形状的开洞上,此过程数学上可由Maxwell 方程组来描述.研究了逆散射问题,即利用散射场的信息来确定开洞的形状.证明了二维TM极化情形时逆散射问题的惟一性和局部稳定性.
出处 《中国科学(A辑)》 CSCD 北大核心 2005年第6期641-650,共10页 Science in China(Series A)
基金 国家基础研究重大项目(973)(批准号:G1999032802)国家自然科学基金重点项目(批准号:10431030)部分资助
  • 相关文献

参考文献11

  • 1Ammari H, Bao G, Wood A W. Analysis of the electromagnetic scattering from a cavity. Japan J Indust,Appl Math, 2002, 19:301-310.
  • 2Ammari H, Bao G, Wood A W. A cavity problem for Maxwell's equations. Meth Appl Anal, 2002, 9:249-260.
  • 3Ammari H, Bao G, Wood A W. An integral equation method for the electromagnetic scattering from cavitys. Math Meth Appl Sci, 2000, 23:1057-1072.
  • 4Asvestas J S, Kleinman R E. Electromagnetic scattering by indented screens. IEEE Trans Antennas Propag, 1994, 42:22-30.
  • 5Goggans P M, Shumpert T H. Backscatter RCS for TE and TM excitations of dielectric-field cavity backed apertures in two-dimensional bidies. IEEE Trans Antennas Propag, 1991, 39:1224-1227.
  • 6Senior T B A, Sarabandi K, Natzke J R. Scattering by a narrow gap. IEEE Trans Antennas Propag, 1990,38:1102-1110.
  • 7李家春 周显初.数学物理中的渐近方法[M].北京:科学出版社,2002..
  • 8Leis R. Initial boundary value problems in mathematical physics. New York: Wiley, 1986.
  • 9Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. New York, Berlin:Springer-Verlag, 1983.
  • 10Elschner J, Schmidt G. Inverse scattering for periodic strctures, stability of polygonal interfaces. Inverse Problems, 2001, 17:1817-1829.

共引文献3

同被引文献34

  • 1童重亮,程晋,山本昌宏.由Dirichlet到Neumann映射重构平面上椭圆型方程对流系数的一种方法[J].中国科学(A辑),2004,34(6):752-766. 被引量:2
  • 2Kohn R V, Vogelius M. Determining conductivity by boundary measurements. Commun Pure Appl Math, 37:113-123 (1984)
  • 3Liu J J, Cheng J, Nakamura G. Reconstruction and uniqueness of an inverse scattering problem with impedance boundary. Sci China Set A-Math, 45(11): 1408 -1419 (2002)
  • 4Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton- Jacobi formulations. J Comput Phys, 79:12-49 (1988)
  • 5Osher S, Fedkiw R. Level set methods and Dynamic Implicit surfaces. In: Applied Mathematical Sciences, Vol 153. New York: Springer, 2003
  • 6Santosa F. A level set approach for inverse problems involving obstacles. ESAIM, Control Optim Calculus Variations, 1:17- 33 (1996)
  • 7Dorn O, Lesselier D. Lever set method for inverse scattering. Inverse Problems, 22:67-131 (2006)
  • 8Chan T F, Tai X C. Level set and total variation regularization for elliptic inverse problems with discom tinuous coefficients. J Comput Phys, 193:40-66 (2003)
  • 9Chan T F, Tai X C. Identification of discontinuous coefficients in elliptic problems using total variation regularisation. SIAM J Sci Comput, 25:881-904 (2003)
  • 10Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems. Commun Pure Appl Math, 42:577-685 (1989)

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部