期刊文献+

微分方程初值问题的GDQR解法 被引量:1

INITIAL-VALUE EQUATIONS ANALYSIS BY THE GENERALIZED DIFFERENTIAL QUADRATURE RULE
原文传递
导出
摘要 本文用最近由Wu提出的一种数值方法-GDQR(GeneralizedDifferentialQuadra-tureRule)对工程和科学技术中常遇到的2—4阶微分方程初值问题进行了求解.部分结果与精确解或龙格-库塔方法所得结果作了对比,表明GDQR在解决常微分方程初值问题时简单方便有效. This paper introduces a new numerical method-Generalized Differential Quadrature Rule proposed by Wu in 2001. Using this method the authors solve several initial-value problems of differential equations of 2nd to 4nd order. Differential quadrature expressions are derived based on the GDQR for these equations. The numerical results were compared with the exact solutions and what obtained by using Runge-Kutta method. The numerical results indicate that GDQR has high efficiency and accuracy for initial-value problems of differential equations.
机构地区 河南科技大学
出处 《数值计算与计算机应用》 CSCD 2005年第2期135-140,共6页 Journal on Numerical Methods and Computer Applications
基金 河南省科技攻关项目0424220224 0424220224.
关键词 初值问题 常微分方程 数值方法 科学技术 精确解 求解 GDQR, differential equations, initial-value, Euler method, Runge-Kutta method
  • 相关文献

参考文献4

  • 1李有发.数值计算方法[M].北京:高等教育出版社,(1966).127-138.
  • 2T.Y. Wu, G.R.Liu, Free vibration of circular plates with variable thickness by the generalized differential quadrature rule. International journal of solids and structure. 38(2001) 7967-7980.
  • 3G.R. Liu, T.Y. Wu, Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition. Journal of sounds and vibration, 246:3 (2001) 461-481.
  • 4T.Y. Wu, G.R. Liu, The generalized differential quadrature rule for forth order differential equation. International journal for numerical methods in engineering, 50 (2001) 1907-1929.

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部