摘要
The k-means clustering algorithm is one of the most commonly used algorithms for clustering analysis. The traditional k-means algorithm is, however, inefficient while working on large numbers of data sets and improving the algorithm efficiency remains a problem. This paper focuses on the efficiency issues of cluster algorithms. A refined initial cluster centers method is designed to reduce the number of iterative procedures in the algorithm. A parallel k-means algorithm is also studied for the problem of the operation limitation of a single processor machine when given huge data sets. The analytical results demonstrate that these improvements can greatly enhance the efficiency of the k-means algorithm, i.e., allow the grouping of a large number of data sets more accurately and more quickly. The analysis has theoretical and practical importance for work on the improvement and parallelism of cluster algorithms.
The k-means clustering algorithm is one of the most commonly used algorithms for clustering analysis. The traditional k-means algorithm is, however, inefficient while working on large numbers of data sets and improving the algorithm efficiency remains a problem. This paper focuses on the efficiency issues of cluster algorithms. A refined initial cluster centers method is designed to reduce the number of iterative procedures in the algorithm. A parallel k-means algorithm is also studied for the problem of the operation limitation of a single processor machine when given huge data sets. The analytical results demonstrate that these improvements can greatly enhance the efficiency of the k-means algorithm, i.e., allow the grouping of a large number of data sets more accurately and more quickly. The analysis has theoretical and practical importance for work on the improvement and parallelism of cluster algorithms.
基金
Supported by the National Defence Science and Technology Research Foundation of China (No. 99J15.3.2.JW0116)