期刊文献+

Improvement and Parallelism of k-Means Clustering Algorithm 被引量:2

Improvement and Parallelism of k-Means Clustering Algorithm
原文传递
导出
摘要 The k-means clustering algorithm is one of the most commonly used algorithms for clustering analysis. The traditional k-means algorithm is, however, inefficient while working on large numbers of data sets and improving the algorithm efficiency remains a problem. This paper focuses on the efficiency issues of cluster algorithms. A refined initial cluster centers method is designed to reduce the number of iterative procedures in the algorithm. A parallel k-means algorithm is also studied for the problem of the operation limitation of a single processor machine when given huge data sets. The analytical results demonstrate that these improvements can greatly enhance the efficiency of the k-means algorithm, i.e., allow the grouping of a large number of data sets more accurately and more quickly. The analysis has theoretical and practical importance for work on the improvement and parallelism of cluster algorithms. The k-means clustering algorithm is one of the most commonly used algorithms for clustering analysis. The traditional k-means algorithm is, however, inefficient while working on large numbers of data sets and improving the algorithm efficiency remains a problem. This paper focuses on the efficiency issues of cluster algorithms. A refined initial cluster centers method is designed to reduce the number of iterative procedures in the algorithm. A parallel k-means algorithm is also studied for the problem of the operation limitation of a single processor machine when given huge data sets. The analytical results demonstrate that these improvements can greatly enhance the efficiency of the k-means algorithm, i.e., allow the grouping of a large number of data sets more accurately and more quickly. The analysis has theoretical and practical importance for work on the improvement and parallelism of cluster algorithms.
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第3期277-281,共5页 清华大学学报(自然科学版(英文版)
基金 Supported by the National Defence Science and Technology Research Foundation of China (No. 99J15.3.2.JW0116)
关键词 data mining cluster analysis k-means algorithm PARALLELISM data mining cluster analysis k-means algorithm parallelism
  • 相关文献

同被引文献19

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部