期刊文献+

SAM产生菌酿酒酵母HYS98发酵动力学及比生长速率控制策略 被引量:12

Kinetics and Specific Growth Rate Control Strategy of Saccharomyces cerevisiae HYS98 Fermentation for High Productivity of SAM
下载PDF
导出
摘要 通过恒化培养对S-腺苷甲硫氨酸(SAM)产生菌酿酒酵母HYS98发酵动力学进行了研究.结果表明,该菌株的生长与限制性基质蔗糖浓度之间符合Monod关系式,最大比生长速率μmax为0.28h-1,饱和常数KS为1.27g/L;当0.005h?1≤μ≤0.11h-1,产物生成模型为qSAM=-1.39μ2+0.19μ,底物消耗动力学模型为qS=μ/0.62+0.012.基于建立的动力学模型,提出了分阶段控制菌体比生长速率的流加培养策略,据此策略在5L反应器中发酵24h,SAM浓度达3.56g/L,而SAM产率达0.15g/(L?h),比文献报道的最高水平高67%. The fermentation kinetics of S-adenosyl-L-methionine (SAM) producing Saccharomyces cerevisiae HYS98 was studied through chemostat cultivation. The results showed that the relationship of biomass specific growth rate (μ) and residual sucrose concentration was in accordance with the Monod equation μ=μmaxCS/(KS+CS), where μmax=0.28 h?1, KS=1.27 g/L. The production of SAM followed the mathematical equation qSAM=?1.39μ2+0.19μ, when 0.005 h?1≤μ≤0.11 h?1. The sucrose consumption kinetics followed the equation qS=μ/0.62+0.012. To maximize the SAM productivity, a two-stage process control strategy was proposed based on the kinetic studies. By applying the strategy to the cultivation in a 5 L bioreactor, the accumulation of SAM reached 3.56 g/L and its production rate reached 0.15 g/(L?h) in 24 h, which was 67% increase over the highest level reported so far.
出处 《过程工程学报》 EI CAS CSCD 北大核心 2005年第3期322-326,共5页 The Chinese Journal of Process Engineering
基金 国家十五科技攻关计划资助项目(编号:2004BA713B01-07)
关键词 S-腺苷甲硫氨酸 恒化培养 动力学模型 流加培养 S-adenosyl-L-methionine chemostat cultivation kinetic model fed-batch cultivation
  • 相关文献

参考文献5

二级参考文献21

  • 1[1]Veaer G. Double-blind comparative clinical trial with S-adenosylmethionine and indomethacin in the treatment of osteoarthritis. American Journal of Medicine, 1987, 83(suppl SA) :78 ~ 80
  • 2[2]Bressa G M, S-adenosyl-l-methionine (SAMe) as antidepressant:Meta-analysis of clinical studies. Acta Neurologica Scandinavica,1994, 154(suppl) :7 ~ 14
  • 3[3]Osman E, Owen J S, Burroughs A K. S-adenosyl-L-methionine-a new therapeutic agent in liver disease? Alimentary Pharmacological Therapy, 1993, 7:21 ~ 28
  • 4[4]Shiozaki S, Yamada H, Tani Y et al. Yeast culture containing S-adenosyl methionine in high concentrations, and process for production of S-adenosylmethionine. 1985,US4562149
  • 5[5]Shiozaki S, Shimizu S, Yamada H. S-Adenosyl-L-methionine production by Saccharomyces sake: optimization of the culture conditions for the production of cells with high S-Adenosyl-L-methionine content. Agricultural Biological Chemistry, 1989, 53: 3269 ~ 3274
  • 6[6]Shiozaki S, Shimizu S, Yamada H. Unusual intracellular accumulation of S-adenosyl-L-metionine by microorganisms. Agric Biol Chem,1984, 48(9): 2293 ~ 2300
  • 7[7]Shiozaki S, Shimizu S, Yamada H. Production of S-adenosyl-L-methionine by Saccharomyces sake. Journal of Biotechnology, 1986, 4:345 ~ 354
  • 8[8]Angeles P M, Production of S-adenosyl-methionine (SAM) by fermentation of transformed bacteria. 1995, EP0647712
  • 9[10]Wegner G H. Emerging applications of the methylotrophic yeasts.FEMS Microbiology Reviews, 1990, 7 ( 3 ~ 4): 279 ~ 284
  • 10[11]Ausubel F M, Brent R, Kingston R E et al. Short protocols in molecular biology, 2nd edn, Greene Publishing Associates and John Wiley & Sons: New York, 1995

共引文献73

同被引文献126

引证文献12

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部