期刊文献+

基于语义相似性的资源协同过滤技术研究 被引量:8

A Study on Item-Based Collaborative Filtering Algorithm Using Semantic Similarity
下载PDF
导出
摘要 为解决协同过滤推荐系统中所存在的可扩展性、稀疏性等问题带来的推荐性能下降,提出新的基于资源语义知识协同过滤算法,算法综合考虑了资源语义和用户评价的影响,改善基于资源协同过滤算法性能.实验表明,基于资源语义的协同过滤算法相对于传统协同过滤算法可提高推荐性能. In a recommendation system based on collaborative filtering(CF), in order to resolve efficiently some problems such as the scalability and sparsity problems the quality of recommendation system will tend to be decreased dramatically. A new CF algorithm based on semantic knowledge of items is presented. The algorithm takes synthetically into account the influence of item semantic and user rating to enhance the item-based CF. Experimental results indicate that the algorithm can achieve better prediction accuracy and provide better recommendation results than with the traditional CF algorithms.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第5期402-405,共4页 Transactions of Beijing Institute of Technology
基金 国家"九七三"计划项目(G1998030414)
关键词 个性化 推荐系统 协同过滤 基于资源CF 语义相似性 personalization recommendation systems collaborative filtering item-based CF semantic similarity
  • 相关文献

参考文献9

  • 1Herlocker J, Konstan J, Borchers A, et al. An algorithmic framework for performing collaborative filtering[A]. Proceedings of the 1999 Conference on Research and Development in Information Retrieval[C]. New York: ACM Press, 1999. 230-237.
  • 2Konstan J, Miller B, Maltz D, et al. Grouplens:Applying collaborative filtering to usenet news[J].Communications of the ACM, 1997,40(3):77-87.
  • 3Sarwar B M, Karypis G, Konstan J, et al. Analysis of recommender algorithms for e-commerce[A].Proceedings of the 2nd ACM E-Commerce Conference[C]. New York:ACM Press, 2000. 158-167.
  • 4Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[A]. Proceedings of the 10th International WWW Conference[C]. New York: ACM Press, 2001.285-295.
  • 5Deshpande M, Karypis G. Item-based top N recommendation algorithm[J]. ACM Transactions on Information Systems, 2004, 22(1):143-177.
  • 6Ghani R, Fano A. Building recommender systems using a knowledge base of product semantics[EB/OL]. http ://www.accenture.com/xdoc/en/services/technology/publications/recommender-ws02.pdf,2002-10-28/2004-02-16.
  • 7Palopoli L, Sacca D, Terracina G, et al. Uniform techniques for deriving similarities of objects and subschemes in heterogeneous databases[J]. IEEE Transactions on Knowledge and Data Engineering,2003,15(1): 271-294.
  • 8Rodriguez M A, Egenhofer M J. Determining semantic similarity among entity classes from different ontologies[J]. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(2):442-456.
  • 9Ganesan P,Garcia-Molina H, Widom J. Exploiting hierarchical domain structure to compute similarity[J]. ACM Transactions on Information Systems, 2003,21(1):53-94.

同被引文献71

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部