期刊文献+

复合材料的椭圆夹杂模型线性温变问题的界面热应力分析

Interfacial Stress Analysis for composite materials model of an Elliptical Inclusion under a Linear Temperature Change
下载PDF
导出
摘要 利用处理平面多连通域热弹性问题的一种有效方法 ,获得了椭圆夹杂模型线性温变问题的热弹性场解答 ,并讨论了夹杂和基体材料的热膨胀系数、热传导系数以及剪切模量对界面热应力的影响规律 ,所获得的结论为增强复合材料的设计与应用提供了有价值的参考依据。 The solution for the thermoelastic field of an elliptical inclusion under a linear temperature change is provided in the present study by using an effective method for solving the plane thermoelastic problems on complex multiply connected region. And the effects of different thermal expansion coefficient, heat conductivity and shear modulus of the materials on the interfacial stresses are also discussed. The results obtained may provide significant and valuable information for the design and application of reinforced composite materials.
作者 宁志华 王璠
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2005年第3期429-433,共5页 Journal of Materials Science and Engineering
基金 国家自然科学基金资助项目 (1 9972 0 0 5) .
关键词 椭圆夹杂 热弹性 线性温变 界面应力 elliptical inclusion thermoelasticity linear temperature change interfacial stress
  • 相关文献

参考文献10

  • 1Mindlin R D, Cooper H L. Thermoelastic Stress around a Cylindrical Inclusion of Elliptic Cross-section [J]. ASME J Appl Mech, 1950,17: 265~268.
  • 2Kattis M A, Meguid S A. Two-Phase Potentials for the Treatment of an Elastic Inclusion in Plane Thermoelasticity[J]. Journal of Applied Mechanics, 1995, 62: 7~12.
  • 3Lekakis I, Kattis M A, Providas E, Kalamkarov AL. The Disturbance of Heat Flow and Thermal Stresses in Composites with Partially Bonded Inclusions [J]. Compos Part B-Eng, 2000, 31:21~27.
  • 4Shen H, Schizvone P, Ru C Q, Mioduchowski A. Inteffacial Thermal Stress Analysis of an Elliptic Inclusion with a Compliant Interphsse Layer in Plane Elasticity [J]. Int J Solids Struct, 2001,38(42-43): 7587~7606.
  • 5Wang Xu, Shen Ya-Peng. A Solution of the Elliptic Piezoelectric Inclusion Problem under Uniform Heat Flux [J]. Int J Solids Struct,2001, 38: 2503~2516.
  • 6BogdanoffJ L. Note on Thermal Stress [J]. ASME J Appl Mech,1954, 21: 88.
  • 7刘又文,宁志华.椭圆夹杂点热源问题的研究[J].湖南大学学报(自然科学版),2004,31(3):98-101. 被引量:1
  • 8Gong S X, Meguid S A. On the Elastic Fields of an Elliptical Inhomogeneity under Plane Deformation [J]. Proc R Soc Lond A,1993, 443: 457~471.
  • 9Chao C K, Shen M H. On Bonded Circular Inclusion in Plane Thermoelasticity[J]. J Appl Mech, 1997, 64: 1000~1006.
  • 10МУСХЕЛИЩВИЛИ Н И.数学弹性力学的几个基本问题[M].北京:科学出版社,1958.145.

二级参考文献6

  • 1MINDLIN R D, COOPER H L. Thermoelastic stress around a cylindrical inclusion of elliptic cross-section[J].ASME Journal of Applied Mechanics, 1950, 17(2): 265-268.
  • 2KATTIS M A, MEGUID S A. Two-phase potentials for the treatment of an elastic inclusion in plane thermoelasticity[J].Journal of Applied Mechanics, 1995, 62(1):7-12.
  • 3CHAO C K, SHEN M H. On bonded circular inclusion in plane thermoelasticity [J].Journal of Applied Mechanics, 1997, 64(4):1000-1004.
  • 4CHEN T Y. Thermal Conduction of a circular inclusion with variable interface parameter[J].Int J Solids Stuctures, 2001,38(17):3081-3097.
  • 5SHEN H, SCHIZVONE P, Ru C Q, et al. Interfacial thermal analysis of an elliptic inclusion with a compliant interphase layer in plane elasticity[J].J Solids Stuctures, 2001, 34(42-43): 7587-7606.
  • 6WANG X, SHEN Y P. A solution of the elliptic piezoelectric inclusion problem under uniform heat flux[J].Int J Solids Stuctures, 2001, 38(15):2503-2516.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部