期刊文献+

广义Besicovitch集的Hausdorff测度

The Hausdorff measure of generalized Besicovitch set
下载PDF
导出
摘要 给定一概率向量p=(p0,p1,…,pm-1)(m≥2),Besicovitch集Bp是由单位区间[0,1]中那些在m-进制展式中j(j=0,1,…,m-1)出现的频率为pj的点组成,即Bp={x∈[0,1]:limn→∞1n∑nk=1τj(xk)=pj,j=0,1,…,m-1},其中τj(·)表示单点集{j}的特征函数.对给定的概率向量p=(p0,p1,…,pm-1)以及满足一定条件的实值向量a=(a0,a1,…,am-1),考虑广义Besicovitch集Bτ,a={x∈[0,1]:}limn→∞1nτ(∑nk=1τj(xk)-npj)=aj,j=0,1,…,m-1},其中τ∈(12,1),并证明了Bτ,a在任何量纲函数下的Hausdorff测度非零即无穷大,进一步,证明了当∑m-1j=0ajlogpj≤0时,广义Besicovitch集的Hausdorff测度为无穷大. For a given probability vector p=(p_0,p_1,...,p_(m-1))(m≥2),Besicovitch set B_p consists of the points in the unit interval I=of which the frequency of j(j=0,1,...,m-1) is p_j in the m-expansion.That is,B_p={x∈:(lim)n→∞1n∑nk=1τ_j(x_k)=p_j,j=0,1,...,m-1},where τ_j(·) is the indicator function of the set {j}.For a given probability p=(p_0,p_1,...,p_(m-1)) and a real-valued vetor a=(a_0,a_1,...,a_(m-1)) which satisfying certain conditions,consider generalized Besicovitch set B_(τ,a)={x∈:}(lim)n→∞1n~τ(∑nk=1τ_j(x_k)-np_j)=a_j,j=0,1,...,m-1},where τ∈(12,1),proved that the Hausdorff measure of B_(τ,a) is either zero or infinity for any gauge functions.And furthermore,got that the Hausdorff measure of B_(τ,a) is infinity when ∑m-1j=0a_jlogp_j≤0.
作者 吴亚豪
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2005年第2期113-117,共5页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(10171028)资助课题
关键词 HAUSDORFF测度 Besicovitch集 量纲 Hausdorff measure Besicovitch set gauge funcion
  • 相关文献

参考文献8

  • 1Besicovitch AS.On the sum of digits of real nmbers represented in the dyadic system[J].Math Ann,1934,110:321~330.
  • 2Eggleston HG.The fractional dimension of a set defined by decimal properties[J].Quart J Math Oxford Ser,1949,20:31~36.
  • 3Kaufman R.A further example on scales of Hausdorff functions[J].J London Math Soc,1974,8(2):585~586.
  • 4Ma Jihua.The Besicovitch sets have infinite Hausdorff measures[J].J Wuhan Univ(Nat Sci Edt),2001,47(1):6~8.
  • 5Fan Aihua,Schmeling J.On fast Birkhoff averaging[J].Math Proc Camb Phil Soc,2003,134:3.
  • 6Falconer KJ.Fractal geometry:mathematical foundation and applications[M].Britain:John Wiley and Sons Inc,1990.
  • 7Mattila P.Geometry of sets and measures in Euclidean spaces,factals and rectifiability[M].Cambridge:Cambridge University Press,1995.
  • 8Shiryayev AN.Probability[M].New York:Springer-Verlag,1984.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部