期刊文献+

基于动态网站的语义数据挖掘模型研究 被引量:3

Research of the Semantic Data Mining Model Based on the Dynamic Web Site
下载PDF
导出
摘要 WEB使用挖掘正逐渐成为WEB个性化服务领域的研究重点,它通过对用户历史使用信息的分析,实现网站的个性化服务。然而,由于动态网页对象URL结构的特殊性,导致了WEB使用挖掘在动态网站应用上的局限性。论文在基于WEB使用挖掘分析的基础上,针对动态网站数据挖掘和个性化服务,提出了语义数据挖掘模型,并详细描述该模型的挖掘流程。 WEB usage mining is gradually becoming the research emphasis on the WEB personalization service field.It can realize the web site personalization service in a certain extent,by analyzing the historical browse information of the users.However,the speciality of the dynamic web object URL,it leads to the limitations of the WEB usage mining on the dynamic web.Based on the analysis of the WEB usage mining and the dynamic web site structure,this paper builds a semantic mining model on the dynamic web site and describes the mining process of this model in detail.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第17期167-169,196,共4页 Computer Engineering and Applications
关键词 动态网站 数据挖掘 WEB个性化服务 WEB语义分析 dynamic web site,Web mining,Web personalization service,Web semantic analysis
  • 相关文献

参考文献6

  • 1邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 2.基于Web的个性化服务[EB/OL].http://www.dmgroup.org.cn/ppt.htm.,.
  • 3宋敏青.数据挖掘在Web中的研究与应用[J].现代情报,2002,22(3):59-61. 被引量:4
  • 4Xin Jin,Bamshad Mobasher.Using semantic similarity to enhance itembased collaborative filtering[C].In:Proc of The 2rid IASTED Int Conf on Information and Knowledge Sharing,Arizona,2003-11.
  • 5Bamshad Mobasherl,Honghua Dai,Tao Luo et al.lntegrafing Web Usage and Content Mining for More Effective Personalizafion[C].In:Proc of the 1st Int.Conf.on Electronic Commerce and Web Technologies,2000:165-176.
  • 6M Eirinaki, M Vazirgiannis, I Varlamis.SEWeP: Using Site Semantics and a Taxonomy to Enhance the Web Personalization Pmcess[C].In:Proc of the 9th ACM SIGKDD [nt Conf on Knowledge Discovery and Data Mining,2003:99-108.

二级参考文献21

  • 1石冰,郑燕峰.信息检索中的数据挖掘技术[J].情报学报,1999,18(S1):108-111. 被引量:26
  • 2Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 3Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 4Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 5Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 7Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 8Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 9Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 10Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.

共引文献560

同被引文献6

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部