期刊文献+

基于EGA的RBF-PLS方法为脉冲萃取过程建模

The RBF-PLS Approach Based on Eugenic Evolution Genetic Algorithm and its Application to Pulsed Extraction Modeling
下载PDF
导出
摘要 针对径向基网络(RBFN)结构与参数难以确定的问题,在分析径向基函数-偏最小二乘(RBF-PLS)方法的基础上,提出以模型拟合和预报性能为目标,同时优选RBF的宽度参数和PLS成分数,并设计了基于优进策略的遗传算法(EGA)实施优化。EGA增加了模式搜索寻优算子,对交叉算子作了改进,自适应地调整交叉率和变异率,由此形成EGA-RBF-PLS方法,并将它应用于回收ε-己内酰胺的脉冲萃取过程。它工作量小,效果良好,所建模型的拟合和预报性能明显优于近似机理模型和其它RBFN模型,稳健性也更好。 In order to overcome the difficult problem of selecting the architecture and parameters of Radial Basis Function Network (RBFN), the RBF-PLS approach based on eugenic evolution genetic algorithm was proposed. Its abbreviation is EGA-RBF-PLS. In this method, the expression of radial basic function is changed, and the spread parameter of hidden units of RBFN and the number of PLS components extracted are optimized by EGA. The object function of EGA is the performance of fitting and predicting of the model. Here EGA integrates deterministic optimize operator, i.e. pattern search operator, with GA whose crossover probability and mutation probability change adaptively through generations. The approach was successfully applied in modeling the procedure of pulsed extraction process recovering caprolactam from polluted water. The approach's modeling workload is not heavy, and performance of predicting and stability of the model are superior to that of mechanism model or other RBFN models.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2005年第3期373-378,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(20076041)
关键词 径向基网络 偏最小二乘回归 优进策略 遗传算法 脉冲萃取 radial basis function network partial least squares regression eugenic evolution strategy genetic algorithm pulsed extraction
  • 相关文献

参考文献5

二级参考文献29

  • 1席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:347
  • 2[1]Bezdek J C. Pattern recognition with fuzzy objective function algorithm[M].New York: Plenum, 1981.
  • 3[2]KohonenT.Self-organizationandassociative memory [M].Berlin,Germany: Springer-Velag, 1989,3rd. ed.
  • 4[3]Chen S, et al. Orthogonal least squares learning algorithm for radial basis function networks [J]. IEEE Trans. on Neural Networks, 1991,2(2):302-309.
  • 5[4]Tarassenko B, et al. Supervised and unsupervised learning in radial basis function classifiers [J]. Vision Image Signal Processing, 1994, 141(1) :210- 216.
  • 6[5]Musavi M F, et al. On the training of radial basis function neural networks [J]. Neural Networks, 1992,5(3) :595 - 603.
  • 7[6]Kaminski W, et al. Kernel orthonormalization in radial basis function neural networks [J]. IEEE Trans. on Neural Networks, 1997, 8(5):1177- 1183.
  • 8[7]Yair E. Competitive learning and soft competition for vector quantizer design [J]. IEEE Trans. on Signal Processing, 1992,40(2):294 -308.
  • 9[8]Kirkpatrick S. Optimization by simulated annealing [J]. Science, 1983,220(3) :671-680.
  • 10DAVIS L D. Handbook of genetic algorithms [M].New York: Van Nostrand Reinhold,1991.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部