期刊文献+

On Dirac's Conjecture

On Dirac's Conjecture
下载PDF
导出
摘要 The extended canonical Noether identities and canonical first Noether theorem derived from an extended action in phase space for a system with a singular Lagrangian are formulated. Using these canonical Noether identities,it can be shown that the constraint multipliers connected with the first-class constraints may not be independent, so a query to a conjecture of Dirac is presented. Based on the symmetry properties of the constrained Hamiltonian system in phase space, a counterexample to a conjecture of Dirac is given to show that Dirac's conjecture fails in such a system.We present here a different way rather than Cawley's examples and other's ones in that there is no linearization of constraints in the problem. This example has a feature that neither the primary first-class constraints nor secondary first-class constraints are generators of the gauge transformation.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期1115-1118,共4页 理论物理通讯(英文版)
基金 国家自然科学基金,北京市自然科学基金
关键词 constrained hamiltonian systems canonical symmetries dirac's conjecture 约束汉密尔顿函数 规范对称 迪拉克猜想 量子场论
  • 相关文献

参考文献19

  • 1P.A.M. Dirac, Lectures on Quantum Mechanics, Blfer Graduate School of Science Monograph Series, Yeshiva University, New York (1964).
  • 2M.E.V. Costa, H.O. Girotti, and T.J.M. Simoes, Phys.Rev. D32 (1985) 405.
  • 3M. Henneaux, C. Teiteboim, and J. Zanell, Nucl. Phys.B332 (1990) 169.
  • 4A. Cabo, Phys. Rev. D42 (1990) 2726.
  • 5Z.P. Li, J. Phys. A: Math. Gen. 24 (1991) 4261.Phys.Rev. ES0 (1994) 876.
  • 6Z.P. Li and R.J. Li, Commun.Theor. Phys. (Beijing, China) 36 (2001) 157.
  • 7A.M. Wang and T.N. Ruan, Phys. Rev. Lett. 73 (1994)2011; Phys. Rev. A54 (1996) 57.
  • 8G.P. Allock, Philos. Trans. R. Soc. A279 (1975) 33.
  • 9R. Cawley, Phys. Rev. Lett. 42 (1979) 413; Phys. Rev.D21 (1980) 2988.
  • 10A. Frenkel, Phys. Rev. D21 (1980) 2986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部