摘要
The extended canonical Noether identities and canonical first Noether theorem derived from an extended action in phase space for a system with a singular Lagrangian are formulated. Using these canonical Noether identities,it can be shown that the constraint multipliers connected with the first-class constraints may not be independent, so a query to a conjecture of Dirac is presented. Based on the symmetry properties of the constrained Hamiltonian system in phase space, a counterexample to a conjecture of Dirac is given to show that Dirac's conjecture fails in such a system.We present here a different way rather than Cawley's examples and other's ones in that there is no linearization of constraints in the problem. This example has a feature that neither the primary first-class constraints nor secondary first-class constraints are generators of the gauge transformation.
基金
国家自然科学基金,北京市自然科学基金