期刊文献+

C_(60)、M@C_(60)(M=Si,Ge)富勒烯分子的压缩力学特性 被引量:4

Compressive mechanical characters of C_(60) and M@C_(60)(M=Si, Ge) fullerene molecules
下载PDF
导出
摘要 采用基于Tersoff势的分子动力学方法,模拟了温度T=300、700和1100K下C_(60)、M@C_(60)(M=Si,Ge)富勒烯分子的对径压缩过程。根据模拟结果,讨论了温度T对3种富勒烯分子压缩力学特性的影响以及它们压缩力学特性的差异。研究表明,在300~1100K范围内,温度T对C_(60)、M@C_(60)(M=Si,Ge)分子压缩力学特性无显著影响;当压缩应变至8%~16%左右,各富勒烯分子在加载点处开始“塌陷”,当压缩应变至28%~32%左右,各富勒烯达到承载极限;C60、Si@C60、Ge@C60分子依次具有由低到高的承载能力。 Tersoff potential based molecular dynamics (MD) simulations were performed to investigate the compressive mechanical characters of C60, M@C60(M=Si, Ge) fullerene molecules at the temperature of 300, 700 and 1100 K. The present study shows that, within the range of 300-1100 K, temperature has little effect on compressive mechanical characters of the C60 and M@C60 (M=Si, Ge) fullerenes, when the compressive strain reaches about 8%-16%, the fullerenes cave in at the locations of their loaded carbon atoms, when the strain was up to about 28%-32%, the fullerenes reach their own load-support limits, and the load support capability of C60, Si@C60 and Ge@C60 molecules has the order of C606060.
作者 沈海军
出处 《功能材料》 EI CAS CSCD 北大核心 2005年第6期930-932,936,共4页 Journal of Functional Materials
关键词 富勒烯 分子动力学 力学特性 内嵌M@C60富勒烯 Bearing capacity Computer simulation Molecular dynamics
  • 相关文献

参考文献8

  • 1Heath J R,O'Brien S C, Zhang Q, et al. [J]. J Am Chem Soc, 1985,107:7779.
  • 2Dresselhaus M S,Dresselhaus G, Eklund P C. Science of Fullerenes and Carbon Nanotubes [M]. San Diego: Academic Press, 1996. 132-133.
  • 3Turker L. [J]. J Mol Struct(Theochem),2003,626:203.
  • 4Turker L. [J]. J Mol Struct(Theochem),2002,619:107.
  • 5Turker L. [J]. J Mol Struct (Theochem),2002,588:127.
  • 6Tersoff J. [J]. Phys Rev Lett,1986,56:632.
  • 7Tersoff J. [J]. Phys Rev B,1989,39(8):5566.
  • 8Sekkai W,Zaoui A. [J]. New Journal of Physics,2002,4:91-99.

同被引文献29

  • 1沈海军,史友进.电场作用下C_(60)富勒烯分子的几何构形与电子结构[J].原子与分子物理学报,2004,21(4):617-621. 被引量:15
  • 2崔鑫,吴健.应力条件下单壁氮化硼纳米管结构、力学和电学性质[J].清华大学学报(自然科学版),2005,45(6):828-830. 被引量:3
  • 3张晓宇,黄再兴.连续介质理论在研究碳纳米管力学性能中的应用进展[J].机械强度,2005,27(3):324-330. 被引量:8
  • 4Iijima S Helical. Microtubes of graphitic Carbon. Nature, 1991, 354(6348): 56 - 58.
  • 5Rueckes T, Kim K, Joselevich E, Tseng G Y, Cheung C L, Lieber C M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 2000, 259(5 476): 94 - 97.
  • 6Henk W C, Postma T T, Yao Z, Grifoni M, Dekker C. Carbon nanotube single-electron transistors at room temperature. Science, 2001, 293(5 527): 76 - 79.
  • 7YuM F, Lourie O, Dyer M J, Moloni K, Kelly T F, Ruoff R S. Strength and breaking mechanism of muhiwalled carbon nanotubes under tensile load. Science, 2000, 287(5 453) : 637- 640.
  • 8Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual Carbon nanotubes. Nature, 1996, 381(6 548). 678 - 680.
  • 9Lourie O, Wagner H D. Evaluation of Young's modulus of carbon nanotube by micro-Raman spectroscopy. J. Mater. Res., 1998, 13(9): 2 418 - 2 423.
  • 10Lourie O, Cox D M, Wagner H D. Bulkling and collapse of embedded carbon nanotubes. Phys. Rev. Lett., 1998, 81( 8): 1 638 - 1 641.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部