期刊文献+

一种新的空间多维关联规则模型与算法 被引量:4

New Spatial Multi-Dimensional Association Rule Model and Its Algorithm
下载PDF
导出
摘要 空间对象具有自相关、连续性、多尺度等特点,导致空间关联规则挖掘与传统的统计关联规则挖掘不同,不存在统计的“事务”,挖掘更加复杂。本文用基于空间相关的影响域来创建“空间事务”,以代替传统关联规则挖掘中的事务,建立了一种新的应用于挖掘空间多维数据的空间多维关联规则模型(Spatialmultidimensionalassociationrulesmodel,SMARM)。设计并实现了一种新的挖掘算法SMARBIA,用基于影响域、空间支持度等剪枝技巧,克服了空间多维关联规则挖掘过程中候选项目集庞大的困难。实验表明,该算法能有效地减少候选项目集而获得较好的性能。 Spatial association rule mining based on spatial objects is more difficult than relational association rule mining because the spatial object attributes are spatially auto-correlated, continuous and multidimensional. It is more difficult to define transactions in traditional association rule mining. This paper establishes a new spatial multi-dimensional association rules model (SMARM) for multi-dimensional spatial data mining, where spatial transactions are defined by a notion of impact zone based on spatial autocorrelation and replaced by a traditional transaction definition. A new mining algorithm (SMARBIA) is realized. The algorithm can avoid enormous candidate items in mining process by pruning techniques based on impact zone and spatial support. Finally the experiment shows that it can decrease the number of candidate items.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第3期301-306,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(49971063)资助项目 江苏省自然科学基金(BK2001045)资助项目。
关键词 故据挖掘 空间多维关联规则 空间数据 影响域 data mining spatial multi-dimensional association rules spatial data impact zone
  • 相关文献

参考文献10

  • 1Malerba D, Lisi F A, Appice A, et al. Mining spatial association rules in census data: a relational approach[A]. Brito P, Malerba D. (Eds.). Proc of the ECML/PKDD Workshop on "Mining Official Data"[C].Helsinki: Helsinki University Printing House, 2002. 80~90.
  • 2Dehaspe L, Toivonen H. Discovery of frequent datalog patterns[J]. Data Mining and Knowledge Discovery, 1999,3(1):7~36.
  • 3Cressie N. In statistics for spatial data[M]. Wiley-Interscience (ISBN: 0-471-00255-0), 1993.
  • 4Lu W, Han J, Ooi B C. Discovery of general knowledge in large spatial databases[A]. Proc of Far East Workshop on Geographic Information Systems[C]. Singapore, 1993. 275~289.
  • 5Ng R, Han J. Efficient and effective clustering method for spatial data mining[A]. Proc 1994 Int Conf VLDB[C]. Santiago, Chile, 1994.144~155.
  • 6Koperski K, Han J. Discovery of spatial association rules in geographic information databases[A]. Proc of Fourth International Symposium on Large Spatial Data Bases[C]. Maine, 1995.47~66.
  • 7Morimoto Y. Mining frequent neighboring class sets in spatial databases[A]. Proc ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C]. San Francisco, CA, USA, 2001.353~358.
  • 8Yoo Jin Soung, Shekhar S. A partial join approach for mining co-location patterns[A]. Dieter Pfoser, Isabel F Cruz, Marc Ronthaler (Eds.). 12th ACM International Workshop on Geographic Information Systems[C]. Washington, DC, USA, 2004.241~249.
  • 9Huang Y, Xiong H, Shekhar S, et al. Mining confident co-location rules without a support threshold[A]. Proc 2003 ACM Symposium on Applied Computing[C]. New York, NY, USA, 2003.497~501.
  • 10Xiong H, Shekhar S, Huang Y, et al. A Framework for discovering co-location patterns in data sets with extended spatial objects[A]. Berry M W, Dayal U, Kamath C, et al. (Eds.). Proceedings of the Fourth SIAM International Conference on Data Mining[C]. Florida, USA, 2004.78~89.

同被引文献51

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部