期刊文献+

基于压缩直方图的图像分类 被引量:1

Image Classification Using Compressed Histograms
下载PDF
导出
摘要 提出了一种颜色直方图表示的彩色图像自动归于语义类别的策略。在这个分类策略中,主成分分析用于把高维颜色直方图映射至低维特征空间,低维的特征向量用于训练支持向量机分类器。实验结果表明,尽管现有的多种图像内容描述子对分类效果的影响不同,但它们都是高度冗余的,可以在不影响分类正确性的基础上被大幅度压缩。本文研究有助于实现基于内容图像检索相关反馈所要求的快速在线学习和重新归类。 Organizing images are classified into semantic categories for searching and browsing through large image repositories. An efficient method is presented using various histogram-based (high-dimensional) image content descriptors for automatically classifying general color photos into relevant categories. Principal component analysis (PCA) is used to project the original high dimensional histograms on their eigenspaces. Lower dimensional eigenfeatures are used to train support vector machines (SVMs) to classify images into their categories. Experimental results show that even though different descriptors perform differently, they are all highly redundant. It is shown that the dimensionality of all these descriptors, regardless of their performances, can be significantly reduced without affecting classification accuracy. Such scheme is used an interactive setting for relevant feedback in content-based image retrieval, where low dimensional content descriptors enable fast online learning and reclassification of results.
作者 冯霞 黄亚楼
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第3期319-324,共6页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 颜色直方图 主成分分析 支持向量机 color histogram principal component analysis support vector machines
  • 相关文献

参考文献18

  • 1Smeulders A W M,Worring S,Santini A,et al.Content-based image retrieval at the end of the early years[J]. IEEE Trans PAMI, 2000,22:1349~1380.
  • 2Chapelle O, Haffner P, Vapnik V. SVMs for histogram-based image classification[J]. IEEE Transaction on Neural Networks, 1999,10(5):1055~1065.
  • 3Tian Q, Hong P, Huang T S. Update relevant image weights for content-based image retrieval using support vector machines[A]. Proc IEEE Int Conf on Multimedia and Expo[C].2000.1199~1202.
  • 4Tieu K, Viola P. Boosting image retrieval[A]. Proc of CVPR[C].2000.228~235.
  • 5Qiu G. Indexing chromatic and achromatic patterns for content-based color image retrieval[J]. Pattern Recognition, 2002,35(8):1675~1686.
  • 6Qiu G, Lam K M. Spectrally layered color indexing, image and video retrieval[A]. CIVR2002, M.S. Lew, N. Sebe, J.P. Eakins (Eds.). Lecture Notes in Computer Science[C].2002,2383:100~107.
  • 7Berens J, Finlayson G D, Qiu G. Image indexing using compressed color histogram[J]. IEE Proceedings, Vision, Image and Signal Processing, 2000,147(4):349~355.
  • 8Huang J, Kumar S R, Mitra M, et al. Image indexing using color correlograms[J]. International Journal of Computer Vision, 1999.245~268.
  • 9Freund Y, Schapire R. A decision-theoretic generalization of online learning and an application to boosting[J]. J Comp & Sys Sci, 1997,55(1):119~139.
  • 10Howe N. Boosted image classification: an empirical study[A]. ICML Workshop on Machine Learning in Computer Vision[C].Sydney, Australia,2002.

同被引文献11

  • 1Wang Feichao. A Survey on Automatic Image Annotation and Trends of the New Age[J]. Procedia Engineering, 2011, 23: 434-438.
  • 2Zhang Dengsheng, Islam M M, Lu Guojun. A Review on Automatic Image Annotation Techniques[J]. Pattern Recognition, 2012, 45(1): 346-362.
  • 3Duygulu P, Barnard K. Object Recognition as Machine Translation Learning a Lexicon for a Fixed Image Vocabulary[C]//Proc. of the 7th European Conference on Computer Vision. Berlin, Germany: Springer, 2002.
  • 4Jeon J. Automatic Image Annotation and Retrieval Using Cross- media Relevance Models[C]//Proe. of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval. [S. 1.]: ACM Press, 2003.
  • 5Feng Shaolei, Manmatha R, LaVrenko V. Multiple Bernoulli Relevance Models for Image and Video Annotation[C]//Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S. 1.]: IEEE Press, 2004.
  • 6Carneiro G, Antoni B C, Moreno P J, et al. Supervised Learning of Semantic Classes for Image Annotation and Retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 394-410.
  • 7Zhou Ning, William K. A Hybrid Probabilistic Model for Unified Collaborative and Content-based Image Tagging[J]. IEEE Transactions on Pattern analysis and Machine Intelligence, 2011, 33(7): 1281-1293.
  • 8Herlocker J, Konstan J, Borchers A, et al. An Algorithmic Framework for Performing Collaborative Filtering[C]//Proc. of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 1999.
  • 9Matlab. Code for the Colored Pattern Appearance Model[EB/OL]. (2010-11-21 ). httD://www.viplab.cs.nott.ac.uk/download/CPAM.html.
  • 10Chandramouli K, Izquierdo E. Multi-class Relevance Feedback for Collaborative Image Retrieval[C]//Proc. of the 10th Workshop on Image Analysis for Multimedia Interactive Services. [S. 1.]: IEEE Press, 2009.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部