期刊文献+

非平稳环境下基于小波变换的信号去噪 被引量:6

Noise Reduction based on Wavelet Transform under Non-stationary Environments
下载PDF
导出
摘要 传统的信号去噪算法往往仅对平稳噪声或缓慢变化的噪声有效,且残留的信号噪声较大。对此,本文研究了一种非平稳环境下基于小波变换的信号去噪算法。该算法对传统的小波阈值法进行了改进,根据信号与噪声在小波域的分布特性以及信号和噪声小波变换模极大值随尺度的变化快慢不同。得到噪声在小波域中的位置以及小波系数大小。实验结果表明:该算法对平稳和非平稳的噪声都能进行较好的去噪。 This paper addresses the problem of noise reduction under stationary and non-stationary environments, which based on the wavelet transform. This algorithm can overcome the deficiency of the conventional algorithms of noise reduction, which were only efficient for stationary environments and have large level of signal residual noise. The algorithm is based on the different amplitude value change of signal and noise and their distributing character in the wavelet domain, by this way, we can find the site and the value of the noise in the wavelet domain. Experiments confirm that the noise reduction by proposed algorithm is effective to reduce the noise under stationary and non-stationary environments.
出处 《信号处理》 CSCD 北大核心 2005年第3期244-248,共5页 Journal of Signal Processing
  • 相关文献

参考文献7

  • 1S. Boll. Reduction of acoustic noise in speech using spectral subtraction[J]. IEEE Transactions on Acoustics,Speech, and Signal processing. 1979(2):112-120.
  • 2M. Berouti, R. Schwartz, J. Makhoul. Enhancement of speech corrupted by acoustic noise[J]. Proc. IEEEI CASSP, Washington, DC, Apr. 1979; 208-211.
  • 3P. Lockwood, J. Boudy. Experiments with a nonlinear spectral sub tractor (NNS), hidden Markov models and projection for robust recognition in cars[J]. Speech Communication. 1992; 11; 215-228.
  • 4Boh Lira Sire, Yit Chow Tong etc. A parametric formulation of the generalized spectral subtraction method[J]. IEEE Transaction on Speech and Audio Processing. 1988; 6(4); 328-337.
  • 5刘海滨,吴镇扬,赵力,曾毓敏.非平稳环境下基于人耳听觉掩蔽特性的语音增强[J].信号处理,2003,19(4):303-307. 被引量:16
  • 6I. Cohen, B. Berdugo. Speech enhancement for non-stationary noise environments[J]. Signal Processig,2001; 81: 2403-2418.
  • 7R. Martin. Noise power spectral density estimation based on optimal smoothing and minimum Statistics[J]. IEEE.Transactions on Speech and Audio Processing. 2001;9(5):504-512.

二级参考文献13

  • 1..http://spib.rice.edu/spib/select_noise.html.,.
  • 2M. Berouti, R. Schwartz, J. Makhoul. Enhancement of speech corrupted by acoustic noise. Proc. IF.F.F. ICASSP,Washinggton, DC, Apr. 1979; 208-211.
  • 3E Lockwood, J. Boudy. Experiments with a nonlinear spectral subtractor(NSS), hidden Markov models and projection for robust recognition in cars. Speech Communication. 1992; 11: 215-228.
  • 4Boh Lim Sim, Yit Chow Tong etc.. A parametric formulation of the generalized spectral subtraction method. IEEE.Transaction on Speech and Audio Processing. 1998; 6(4):328-337.
  • 5Nathalie Virag, Single channel speech enhancement based on masking properties of human auditory system. IEEE Transactions on Speech and Audio Processing. 1999; 7(2):126-137.
  • 6I. Cohen, B. Berdugo. Speech enhancement for nonstationary noise environments. Signal Processing. 2001; 81:2403-2418.
  • 7Y. Epharim, D. Malah. Speech enhancement using a minimum mean square log-spectral amplitude estimator.IEEE. Transactions on Acoustics. Speech, and Signal Processing. 1984; 32(6): 1109-1121.
  • 8E M. Crozier, B.M.G. Cheetham etc. Speech enhancement employing spectral subtraction and linear predictive analysis. Electronics Letters. 1993; 29 (12): 1094-1095.
  • 9R. Martin. Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE.Transactions on Speech and Audio Processing. 2001; 9(5):504-512.
  • 10T. Painter, A. Spanias. Perceptual coding of digital audio.Proe. Of the IEEE. 2000; 88(4): 451-512.

共引文献15

同被引文献55

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部