摘要
本文给出五边方程的集合理论解.假设V作用在有限群的张量积G(?)G上,满足五边方程V12V13V23=V23V12,则在给定条件下,V由三元组(a,d,p)惟一确定,其中a,d,p是G到自身的群同态。由此给出了V的分类.
This paper gives a set-theoretical solution of the pentagon equation. Suppose that there is a map V acting on a finite group G (?) G satisfying the pentagon equation V12V13V23 = V23V12. Then under the given conditions, V is determined uniquely by a triple (a,d,p) where a, d,p are group endomorphisms of G and therefore we give a classfication of V.
出处
《数学进展》
CSCD
北大核心
2005年第3期331-337,共7页
Advances in Mathematics(China)
基金
The project is supported by NSFC(No.10301004).
关键词
五边方程
乘法算子
余卷积
HOPF代数
pentagon equation
multiplicative operator
convolution
Hopf algebra