期刊文献+

五边方程的集合理论解(英文)

On Set-theoretical Solution of the Pentagon Equation
下载PDF
导出
摘要 本文给出五边方程的集合理论解.假设V作用在有限群的张量积G(?)G上,满足五边方程V12V13V23=V23V12,则在给定条件下,V由三元组(a,d,p)惟一确定,其中a,d,p是G到自身的群同态。由此给出了V的分类. This paper gives a set-theoretical solution of the pentagon equation. Suppose that there is a map V acting on a finite group G (?) G satisfying the pentagon equation V12V13V23 = V23V12. Then under the given conditions, V is determined uniquely by a triple (a,d,p) where a, d,p are group endomorphisms of G and therefore we give a classfication of V.
作者 蒋立宁 刘明
出处 《数学进展》 CSCD 北大核心 2005年第3期331-337,共7页 Advances in Mathematics(China)
基金 The project is supported by NSFC(No.10301004).
关键词 五边方程 乘法算子 余卷积 HOPF代数 pentagon equation multiplicative operator convolution Hopf algebra
  • 相关文献

参考文献13

  • 1Mac Lane S. Categories for the Working Mathematician [M]. GTM, Vol 5, Springer: New York. 1974.
  • 2Moore G, Seiberg N. Classical and quantum conformal field theory [J]. Comm. Math. Phys., 1989, 123:177-254.
  • 3Baaj S, Skandalis G. Unitaires multiplicatifs er dualite pour les produits croises de C*-algebras [J]. Ann.Sci. Norm Sup., 1993, 1: 425-488.
  • 4Heeswijck Van. Duality in the theory of crossed product [J]. Math. Scand, 1979, 44: 313-329.
  • 5Kirchberg E. Representation of convolutive Hopf-W*-algebras and non-abelian duality [J]. Bull Acad.,1977, 25: 117-122.
  • 6Skandalis G. Operator algebras and duality [C]. In: Proc. ICM-1990. Kyoto, 11: 997-1009.
  • 7Zhang Xiaoxia. Multiplier Unitary and Quantum group [D]. Thesis of Peking University, 2001.
  • 8Davydov A. Pentagon equation and matrix bialgebras, arXiv: math. QA/0001095 2000, V2-24(Feb).
  • 9Miltaru G. The Hopf module category and the Hopf equation [J]. Comm. in Algebra, 1998, 10: 3071-3097.
  • 10Miltaru G. New types of bialgebra arising from the Hopf equation [J]. Comm. in Algebra, 1998, 10:3099-3117.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部