期刊文献+

环的Von Neumann正则性 被引量:1

VON NEUMANN REGULARITIES OF RINGS
下载PDF
导出
摘要 讨论了环和极大商环的正则性,给出交换左(右)极大环,自内射环和凝聚环是正则环的一个充分条件,同时得到一些交换环的极大商环的正则性及自内射性. In this paper the regularities of rings are investigated.It is proved that the commutative left(right) maximal rings and self-injective rings with regular Jacobson radicals are regular.A sufficient condition for a coherent ring to be a regular ring was given.The regularities and self-injectivities of some maximal quotient rings are obtained.
作者 廖贻华 易忠
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2005年第2期31-33,共3页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10271021) 教育部优秀青年教师资助计划资助项目(2002-40) 广西自然科学基金资助项目(0135005) 广西十百千人才基金资助项目(99217) 广西师范大学科研基金资助项目
关键词 von Neumann正则环 JACOBSON根 Ⅱ-凝聚环 本质子模 极大商环 von Neumann regular ring Jacobson radical Π-coherent ring essential submodule maximal quotient ring
  • 相关文献

参考文献16

  • 1Bass H.Finitistic dimension and a homological generalization of semiprimary rings[J].Trans Amer Math Soc,1960,95:466-488.
  • 2Snider R L.Semiprimitive π-regular rings of bounded index are left max rings[J].Comm Alg,2001,29(12):5 433-5 437.
  • 3Utumi Y.On contious and self-injective rings[J].Trans Amer Math Soc,1965,118:158-173.
  • 4Hamsher R M.Commutative rings over which every module has a maximal submodule[J].Proc Amer Math Soc,1967,18:1 133-1 137.
  • 5Faith C.Algebra II:Ring theory[M].Berlin:Springer-Verlag,1976.74-85.
  • 6Stenetrom B.Rings of quotients[M].Berlin:Springer-Verlag,1975.252-254.
  • 7Birkermeier G F.A generalization of FPF rings[J].Comm Alg,1989,17:855-884.
  • 8Anderson F W,Fuller K R.Rings and categorirs of modules[M].Berlin:Springer-Verlag,1974.118-121.
  • 9Colby R R.Rings which have flat injective modules[J].J Algebra,1975,35:239-252.
  • 10Camillo V.Coherence for polynomial rings[J].J Algebra,1990,132:72-76.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部