摘要
定义体k上的n次一般方程式,研究以体k的元为系数的n次一般方程式幂根可解问题.利用Galois扩大体的理论推导出次数n≥5时体k的元为系数的n次一般方程式不能幂根可解,但n≤4的一般方程式却能幂根可解,并给出n=3时的计算公式.
We give the definition of %n% time general equations in the field %k%,and studies solvable solution of general equations,which coefficient is from elements of the field %k%.On the basis of Galois′s extension field,we deduced that %n%≥5 general equations of coefficients %k% are insolvable,but %n%≤4 general equations are solvable, and giving the %n%=3 formula of calculation.
出处
《沈阳化工学院学报》
2005年第2期139-141,160,共4页
Journal of Shenyang Institute of Chemical Technolgy
关键词
特征数
基本对称函数
幂根可解
character
elementary symmetric functions
solvable evolution