期刊文献+

半线性奇系数临界双调和方程的Dirichlet问题 被引量:8

On the Dirichlet Problem of Semilinear Singular-critical Biharmonic Equations
下载PDF
导出
摘要 主要探讨了两类半线性双调和Dirichlet问题:奇系数次临界问题和临界但带较弱奇性问题,得出了在临界维数和正常维数不同情况下都至少有一个正解的结论.同时也研究了临界维数的消失问题,比较了奇系数与较弱奇性不同情况下临界维数的变化,得出奇性越大临界维数越少的结论. In this paper, the authors mainly study two semilinear biharmonic problems: singular-subcritical and critical with lower singularity. The existence of 'at least' a positive solution is obtained whether the dimensions are critical or not. In the meanwhile, the authors study the problem of the critical dimensions′ disappearing and compare the change of them between higher singularity and lower singularity, and so the authors get the result, the higher the singularity, the less the critical dimensions.
作者 熊辉 沈尧天
出处 《数学物理学报(A辑)》 CSCD 北大核心 2005年第3期299-306,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(10171032 10071080 10101024)资助
关键词 双重调和方程 奇系数 临界维数 消失 Biharmonic equation Singularity Critical dimensions Disappear.
  • 相关文献

参考文献6

  • 1Pucci P, Serrin J. Critical exponents and critical dimensions for polyharmonic equations. J Math Pure Appl, 1990,69:55-83.
  • 2Noussair E S, Swanson Ch A, Yang Jianfu. Critical semilinear biharmonic equations in RN. Proc Royal Soc Edinburgh, 1992,121A:139-148.
  • 3Hulshof J, R C A M. Van der vorst, diffirential systems with strongly indefinite variational structure. J Funct Anal, 1993, 114:32-58.
  • 4Edmunds D E, Fortunato D, Jannelli E. Critical exponents, critical dimensions and the biharmonic operator. Arch Rational Mech Anal, 1990, 112:269-289.
  • 5Francisco Bernis, Hans Christoph Grunau. Critical exponents and multiple critical dimensions for polyharmonic operators. J Differ Equations, 1995, 117:469-486.
  • 6Bernis F, Garcia Azorero J, Peral I. Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order. Adv Differential Equation, 1996, 117(1): 219-240.

同被引文献14

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部