期刊文献+

元胞自动机法模拟铝合金三维枝晶生长 被引量:10

Simulating the Three-Dimensional Dendritic Growth of Al Alloy Using the Cellular Automata Method
下载PDF
导出
摘要 以元胞自动机模型为基础,基于晶粒形核和生长的物理过程及热质传输过程,建立了铝合金凝固过程微观组织形成及枝晶形貌演化的三维元胞自动机模型。与传统的元胞自动机不同,该模型不仅考虑了温度场扩散而且考虑了固液相中的溶质扩散、曲率过冷等重要因素。枝晶尖端生长速度与局部过冷度的关系采用KGT(Kurz-Giovanola-Trivedi)模型,温度场和浓度场计算采用有限差分法。使用该模型模拟了单晶生长和多晶生长。模拟结果表明,所建立的模型能够合理反映质点形核、单晶粒生长和多晶粒生长,微观组织形貌的模拟计算结果合理。 Based on physical process of nucleation and growth of grains and basic transfer equations such as heat and solute transfer equations, we develop a Cellular Automaton (CA) model for the three-dimensional simulation of microstructure, microsegregation and free dendritic growth of aluminium alloys. The growth of the dendritic is controlled by CA method. Different from the classical cellular automata in which only the temperature field is calculated, this model includes both the solute diffusion in liquid and in solid and curvature undercooling, which have vital influence on the evolution of microstructure. The relationship between the growth velocity of a dendrite tip and the local undercooling is calculated according to the KGT (Kurz-Giovanola-Trivedi) model. The finite difference method is used to calculate the temperature and solute fields in the calculation domain. The model is applied to predict the microstructure, such as growth of single crystal, growth of multi-crystal. Simulated results show that the nucleation, growth of single crystal, and multi-crystal and microstructure evolution of free dendritic crystal could be predicted reasonably. The calculated results are coincident with actual phenomena.
出处 《铸造》 EI CAS CSCD 北大核心 2005年第6期575-578,共4页 Foundry
基金 国家自然科学基金资助项目(50474007) 江西省自然科学基金(0450050)
  • 相关文献

参考文献10

二级参考文献33

  • 1[1]ZHU Pan-ping, Smith R W. Dynamic simulation of crystal growth by monte carlo method- Ⅰ . Model description and kinetics[J]. Acta Metall Mater, 1992, 40:683 692.
  • 2[2]ZHU Pan-ping, Smith R W. Dynamic simulation of crystal growth by monte carlo method-Ⅱ. Ingot microstructures[J]. Acta Metall Mater, 1992, 40:3369 - 3379.
  • 3[3]Rappaz M, Gandin C A. Probabilistic modeling of microstructure formation in solidification processes[J]. Acta Metal Mater, 1993, 41:345 - 360.
  • 4[4]Gandin G A, Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metal Mater, 1994, 42: 2233-2246.
  • 5[5]Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater, 1996, 47: 4253-4262.
  • 6[7]Ode M, Gyoon S, Suzuki T. Recent advances in the phase-field model for solidification[J]. ISIJ International, 2001, 41(10): 1076-1082.
  • 7[8]Warren J A, Boettinger W J. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase field method[J]. Acta Metal Mater, 1995, 43: 689-703.
  • 8[11]Dilthey U, Paviyk V. Numerical simulation of dendritic morphology and grain growth with cellular automata[A]. Modeling of Casting, Welding and Advanced Solidification Processes Ⅷ[C]. 1998. 589-596.
  • 9[12]Nastac L. Simulation of microstructure evolution during solidification of inconel 718 [J]. AFS Transaction, 1996, 104: 425-434.
  • 10[14]Glicksman M E, March S P. Handbook of Crystal Growth lB[M]. North Holland: Amsterdam Publishers, 1993.

共引文献70

同被引文献183

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部