摘要
在有限群的模表示理论中,通常涉及到Cartan不变量时,往往要求基域为分裂域。本文讨论了基域为非分裂域情形时Cartan不变量的形式及相关的几个命题,且利用它们证明了非分裂域情形下关于满的局部内G—代数的Ikeda定理。
In the modular representation theory of finite groups, when Cartan invariants are dealt with, the residue field is often assumed to be a splitting field. This paper discusses the forms of Cartan matrix in the case of non-splitting field and proves IKEDA theorem on epimorphic local interior G-algebras.
关键词
CARTAN不变量
分裂域
Ikeda定理
Cartan invariants
interior G-algebras
Splitting field idempotent
module
defect group
vertex