期刊文献+

基于图象内容的颅骨缺如自动分析研究 被引量:4

Research of Automatic Analysis of the Want of Skull Based on Image Content
下载PDF
导出
摘要 基于图象内容的自动分析是当今医学影像领域的研究热点 ,分析颅骨 CT图象是否缺如能为医生的诊断提供帮助 .为此 ,提出了一套新的实用方法 ,该方法首先采用基于 k-均值聚类动态选取种子像素和生长准则的区域增长法精确地将颅骨从图象中自动分割出来 ,然后利用边界跟踪法找出分割出的区域边界 ,分析其形状 ,以圆形度作为描述参数 ,最后利用熵函数推导出计算机自动诊断颅骨缺如的规则 .实验证明 ,该方法通过对图象内容的分析 ,对于未参加训练的 10 0例 ,从第 3脑室下部层面到大脑皮质上部层面 ,颅脑图象缺如现象的诊断识别率达到了10 0 % . Automatic analysis based on image content is a hotspot with bright future of medical image diagnosis technology research. Analysis of the want of skull can help doctor to diagnose. In this paper, a new method is proposed to automatic detect the want of skull based on CT image content. Region growing method, which seeds and growing rules are chosen by k means clustering dynamically, is applied for image automatic segmentation. The segmented region boundary is found by boundary tracing. The shape of the boundary is analyzed, and the circularity is taken as description parameter. Then, the rules for computer automatic diagnosis of the want of skull are reasoned by entropy function. This method is used to analyze the images from the third ventricles below layer to cerebral cortex top layer. Experimental result shows that the recognition rate is 100% for the 100 images, those are chosen from medical image database randomly and are not included in the training examples. This method integrates gray and shape feature, and isn't affected by image size and position. This research achieves high recognition rate and sets a basis for automatic analysis of brain image.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2003年第2期214-218,共5页 Journal of Image and Graphics
关键词 医学影像学 计算机辅助诊断 图象分割 K-均值聚类 信息熵 Medical image, Computer image processing, Computer aided diagnosis, Image segmentation, k means clustering, Information entropy
  • 相关文献

参考文献5

  • 1Kaus Michael R, Warfield Simon K, Nabavi Arya et al.Automated segmentation of MRI of brain tumors[J]. Radiology,2001,218(2) :586-591.
  • 2Warfield Simon K, Kaus Michael, Jolesz Ferenc A et al.Adaptive template moderated spatially varying statistical classification[J]. Medical Image Analysis, 2000,4 ( 1 ): 43 -55.
  • 3罗述谦,李响.基于最大互信息的多模医学图象配准[J].中国图象图形学报(A辑),2000,5(7):551-558. 被引量:49
  • 4罗述谦,赵媛媛,阎华,李响.用活动轮廓法对大脑皮质形态的研究[J].首都医科大学学报,2001,22(1):13-16. 被引量:1
  • 5HanJiawei KamberM.Data Mining Concepts and Techniques[M].北京:机械工业出版社,2001..

二级参考文献12

  • 1[1]MacDonald D, Avis D , Evans A C.Automatic parameterization of human cortical surfaces. Annual Symp I nfo Proc Med Imag,1993
  • 2[2]Evans A C, Kamber M, Collins D L, et al. An MRI-based prob abilistic atlas of neuroanatomy. New York:Megnetic Resonance Scanning and Elilepsy, Plenum Press,1994. 263
  • 3[3]Davatzikos C,Prince J L.An active contour model for mappin g the cortex. IEEE Trans Med Imag,1995,14: 65~85
  • 4[4]Davatzikos C, Bryan R N. Using a deformable surface model t o obtain a shape representation of the cortex.IEEE Trans Med Imag,1996,15:785 ~795
  • 5Maurer C R, Fitzpatrick J M. A review of medical image regis-tration In:Macjunas Neurosurgery. Park Ridge. IL: American Association of Neurological Surgeons, 1993, 17-44.
  • 6Woods R P, Mazziotta J C, Cherry S R, MRI-PET registration with automated algorithm. Journal of Computer Assisted Tomography. 1993,17(4):536-546.
  • 7Hill D L, Studholme C, Hawkes D J. Voxel similarity measures for automated image registration. In: Proc. Visualization in Biomedical Computing. 1994, SPIE 2359,205-216.
  • 8Collignon A, Maes F, Delaere D et al. Automated muhimodality image registration based on information theory. In:Proc. Information Processing in Medical Imaging Conf.Dordrecht. 1995,263-274.
  • 9Viola P, Wells I, William M. Alignment by maximization of mutual information. In: Proc. Int'l Conf. on Computer Vision.Cambridge, MA, 1995,16-23.
  • 10Maes F, Collignon A, Vandermeulen D et al. Multi-modality image registration by maximization of mutual information. In:Proc. IEEE Workshop Mathematical Methods in Biomedical Image Analysis. San Franciseo. CA. 1996,14-22.

共引文献60

同被引文献33

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部