期刊文献+

Support Vector Machine for mechanical faults classification 被引量:1

Support Vector Machine for mechanical faults classification
下载PDF
导出
摘要 Support Vector Machine (SVM) is a machine learning algorithm based on the Statistical Learning Theory (SLT), which can get good classification effects with a few learning samples. SVM represents a new approach to pattern classification and has been shown to be particularly successful in many fields such as image identification and face recognition. It also provides us with a new method to develop intelligent fault diagnosis. This paper presents an SVM based approach for fault diagnosis of rolling bearings. Experimentation with vibration signals of bearing was conducted. The vibration signals acquired from the bearings were directly used in the calculating without the preprocessing of extracting its features. Compared with the Artificial Neural Network (ANN) based method, the SVM based method has desirable advantages. Also a multi-fault SVM classifier based on binary clas- sifier is constructed for gear faults in this paper. Other experiments with gear fault samples showed that the multi-fault SVM classifier has good classification ability and high efficiency in mechanical system. It is suitable for on line diagnosis for mechanical system. Support Vector Machine (SVM) is a machine learning algorithm based on the Statistical Learning Theory (SLT), which can get good classification effects with a few learning samples. SVM represents a new approach to pattern classification and has been shown to be particularly successful in many fields such as image identification and face recognition. It also provides us with a new method to develop intelligent fault diagnosis. This paper presents an SVM based approach for fault diagnosis of rolling bearings. Experimentation with vibration signals of bearing was conducted. The vibration signals acquired from the bearings were directly used in the calculating without the preprocessing of extracting its features. Compared with the Artificial Neural Network (ANN) based method, the SVM based method has desirable advantages. Also a multi-fault SVM classifier based on binary clas- sifier is constructed for gear faults in this paper. Other experiments with gear fault samples showed that the multi-fault SVM classifier has good classification ability and high efficiency in mechanical system. It is suitable for on line diagnosis for mechanical system.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第5期433-439,共7页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project (No. 0424260002) supported by the Natural ScienceFoundation of Henan Province, China
关键词 Support Vector Machine (SVM) Fault diagnosis Multi-fault classification Intelligent diagnosis SVM 支持向量装置 机械故障 故障分析 故障分类 智能诊断
  • 相关文献

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部