期刊文献+

有循环极大子群的素数幂阶群的作用是边传递的图(Ⅰ) 被引量:8

GRAPHS ON WHICH A GROUP OF PRIME POWER ORDER WITH A CYCLIC MAXIMAL SUBGROUP ACTS EDGE-TRANSITIVELY(***)
原文传递
导出
摘要 Γ是一个有限的、单的、无向的且无孤立点的图, G是Aut(Γ)的一个子群.如果G在Γ的边集合上传递,则称Γ是G-边传递图.我们完全分类了当G为一个有循环的极大子群的素数幂阶群时的G-边传递图.这扩展了Sander的结果.本文仅给出其中的一种情况,即当G同构于群时,所有的G-边传递图.结果为。 Let Γ be a finite simple undirected graph with no isolated vertices , G is a subgroup of Aut(Γ). The graph Γ is said to be G-edge transitive if G is transitive on the set of edges of Γ. We obtain a complete classification of G-edge transitive graphs , which G is a group of prime-power order with a cyclic maximal subgroup. This extend Sander's conclusion. In this paper, we only consider the case that G is isomorphic to group Then Γ is G-edge-transitive if and only if F is one of following graphs
作者 陈尚弟
出处 《系统科学与数学》 CSCD 北大核心 2005年第3期331-339,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10171089)中国民航学院博士基金资助课题
关键词 极大子群 素数幂 循环 边传递图 完全分类 孤立点 有限 集合 同构 Graph, automorphism group, edge-transitive.
  • 相关文献

参考文献8

  • 1Wielandt H. Finite Permutation Group. New York: Academic Preess, 1964.
  • 2Harary F. Graph Theory. Addiso-Wesley, Reading, Mass, 1969.
  • 3Biggs N. Algebraic Graph Theory. Combridge Tracts in Math. London: Combridge Univ. Press,1974.
  • 4Ivanov A A. Distance-transitive representation of the symmetric group. J. Combin Theory, ser. B,1986, 41: 255-274.
  • 5Sander R S. Graphs on which a dihedral group acts edge-tansitively. Discrete Mathmatics, 1993,118: 225-318.
  • 6Robinson J S. A Couse in the Theory of Group. New York: Spring-Verlag, 1982, 136-137.
  • 7Yap H P. Some Topics in Graph Theory. London Math. Suc. Lecture Note, Series 108. London:Combridge Univ. Press, 1986, 90 .
  • 8Dixon John D, Mortimer Brian. Permutation Group. New York: Springer-Verlag, 1997, 10.

同被引文献30

  • 1Robinson J S. A Couse in the Theory of Group. New York: Spring-Verlag, 1982, 136-137.
  • 2Sanders R S. Graphs on which a dihedral group acts edge-transitively. Discrete Mathematics, 1993, 118:225-232.
  • 3Sander R S.Graphs on which a dihedral group acts edge-transitively[J].Discrete Mathmatics,1993,118:225-232.
  • 4John D Dixon,Brian Mortimer.Permutation Groups[M].New York:Springer-Verlag,2001.
  • 5Chris Godsil,Gordon Royle.Algebraic Graph Theory[M].New York:Springer-Verlag,2000.
  • 6王萼芳.有限群论基础[M].北京:清华大学出版社,1999.
  • 7[1]徐明耀.有限群导引(上、下册)[M].北京:科学出版社,1999.
  • 8[2]SANDER R S.Graphs on which a dihedral group acts edge-transitively[J].Discrete Mathmatics,1993,118:225-232.
  • 9[4]CAI HENG LI,PRAEGER C E,VENKATESH A,et al.Finite Locally quasiprimi-tive groups[J].Discrete Mathematics,2002,246:197-218.
  • 10[5]DIXON JOHN D,MORTIMEN BRIAN.Permutation Group[M].New York:Springer-Verlag,1997:18.

引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部