期刊文献+

N维纯时滞微分方程的稳定性

STABILITY FOR N-DIMENSIONAL DIFFERENTIAL EQUATIONS WITH PURE DELAY
原文传递
导出
摘要 本文考虑了n维纯时滞微分方程的稳定性,利用分析技巧给出纯时滞微分方程稳定的几个充分条件.当n=1时,所得结论推广和改进了Yorke等人的相应结论. The stability for n dimensional delayed differential equations is considered in this paper. Using analytic technique, some sufficient conditions for the stability of such equations are derived. When n=1, the new results given in the paper improve the existing relevant stability results which are presented by Yorke and other researchers.
出处 《系统科学与数学》 CSCD 北大核心 2005年第3期340-347,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60274007 60405002)面向21世纪教育振兴行动计划湖北省教育厅优秀青年项目(2003B001)资助课题
关键词 时滞微分方程 稳定性 N维 充分条件 分析技巧 N维 Stability, pure delay, differential equations, bounded, monotone.
  • 相关文献

参考文献8

  • 1Hara T, Yoneyama T and Miyazaki R. Some refinements of Razumikhin's method and their applications. Funkcialaj Ekvacioj, 1992, 35: 279-305.
  • 2Yoneyama T. Uniform asymptotic stability for n-dimensional delay-differential equations. Funkcialaj Ekvacioj, 1991, 34: 495-504.
  • 3Pituk M. Asymptotic behavior of solutions of a differential equation with asymptotically constant delay. Nonlinear Analysis Theory Methods and Applications, 1997, 30(2): 1111-1118.
  • 4Yorke J A. Asymptotic stability for one dimensional differential-delay equations. J Differential Equations, 1970, 7: 189-202.
  • 5Yoneyama T. On the stability for the delay-differential equation x(t) = -a(t)f(x(t - r(t))). J Math. Anal. Appl., 1986, 120(1): 271-275.
  • 6Yoneyama T. On the 3/2 stability theorem for one-dimensional delay-differential equations. J Math. Anal. Appl., 1987, 125(1): 161-173.
  • 7Yoneyama T. The 3/2 stability theorem for one-dimensional delay-differential equations with unbounded delay. J Math. Anal. Appl., 1992, 165(1): 133-143.
  • 8Muroga Y. On Yoneyama's 3/2 stability theorems for one-dimensional delay differential equations.J Math. Anal. Appl., 2000, 247(1): 314-322.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部