期刊文献+

分片逆回归中的渐近推断 被引量:1

ASYMPTOTICALLY INFRERNCE FOR SLICED INVERSE REGRESSION
原文传递
导出
摘要 分片逆回归是最近提出的一种多元数据分析方法.这是一种有效的降维方法.使用该方法的关键点在于能给出条件协差阵一个较好的估计.为此目的,本文基于拟残差给出了一个估计,并且研究了它的渐近性质,最后给出了部分模拟结果. Li (1989,1991) and Duan and Li (1991) proposed a new technique for analysing the multivariate data: sliced inverse regression. The key step to employing the new technique is the requirement of an estimate of covariance matrix. In this paper, a Quasi-residuals-based estimate is given and asymptotical properties is obtained. Sample properties are investigated in a simulation study.
作者 田茂再
出处 《系统科学与数学》 CSCD 北大核心 2005年第3期348-355,共8页 Journal of Systems Science and Mathematical Sciences
关键词 渐近推断 回归 分片 数据分析方法 降维方法 渐近性质 模拟结果 协差阵 关键点 估计 残差 Concomitants, generalized Quasi-residuals, order statistics, m-dependent random variables.
  • 相关文献

参考文献10

  • 1Li K C. Sightseeing with SIR: A transformation based projection pursuit method. Technical report,Dept. Mathematics, UCLA, 1989.
  • 2Li K C. Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist.Assoc., 1991, 86: 316-327.
  • 3Duan N and Li K C. Slicing regression: A link-free regression method. Ann. Statist., 1991, 19:505-530.
  • 4Hsing T and Carroll R J. An asymptotic theory for sliced inverse regression. Ann. Statist. Assoc.,1992, 20: 1040-1061.
  • 5Zhu L and Ng K W. Asymptotics of sliced inverse regression. Statistica Sinica, 1995, 5: 727-736.
  • 6Yang S S. General distribution theory of the concomitants of order statistcs. Ann. Statist., 1977,5: 996-1002.
  • 7Gasser T, Sroka L and Christine J S. Residual variance and residual pattern in nonlinear regression.Biometrika, 1986, 73: 625-633.
  • 8Muller H G and Stadtmuller U. Estimation of heteroscedasticity in regression analysis. The Annals of Statistics., 1987, 15: 610-625.
  • 9Hall P, Kay J W and Titterington D M. Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika, 1990, 77: 521-527.
  • 10Hoeffding W and Robbins H. The central limit theorem for dependent random variables. Duke Math. J., 1948, 15: 773-780.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部