摘要
本文研究了Marcinkiewicz积分交换子μΩ,b(f)(x)=(integral from n=0 to ∞|Fb,t(f)(x)|2 dt/t3)1/2, 其中Fb,t(f)(x)=integral from n=|x-y|≤t(Ω(x-y_/|x-y|n-1)b(x)-b(y)f(y)dy及b∈Λβ,证明了算子μΩ,b是Lp(Rn) 到Fβ,∞p(Rn)上的有界算子并且也是Lp(Rn)到Lq(Rn)上的有界算子.
In this paper, the authors consider the commutator of Marcinkiewicz integral defined by μΩb(f)(x)=(integral from n=0 to ∞|Fb,t(f)(x)|2dt/t31/2,where Fb,t(f)(x)=integral from n=|x-y|≤ t to (Ω(x-y)/|x-y|n-1[b(x)- b(y)] f(y)dy and b ∈ Aβ, and show that the operator μΩ,b is bounded from Lp(Rn) into Fβ,∞ p(Rn), and is also from Lp(Rn into Lq(Rn).
出处
《数学年刊(A辑)》
CSCD
北大核心
2005年第3期325-332,共8页
Chinese Annals of Mathematics
基金
教育部博士点基金(No.20030335019)
国家科委973(No.RC971077
No.1999075105)
杭州师范学院博 士启动基金资助的项目.