摘要
本文给出有限域F=Fq上一类方程a1xd111…xd1n1n1+…+an1xdn111…xdn1n1n1 +an1+1xdn1+111…xdn1+1n2n2+…+an2x1dn21…xdn2n2n2=b 当指数满足一定条件时,在Fn2上解数的一个直接公式,这里dij>0,ai ∈F*,b ∈F,q=pf,f≥1, p足一个奇素数,0<n1≤n2.
In this paper, the authors get an explicit formula for the number of solutions of the following equation a1xd(?)1…xd1n11+…+an1xdn111…xdn1n1n1+…an1xdn111…xdn1n1n1…xdn1n1n1 +an1+1xdn11+11…xdn1n2+1n2+…+an2xdn211…xdn2n2n2=b in Fn2q. where dij>0, gcd(det(dij),q-1) = 1, ai ∈ F*q and b ∈ Fq, q = pf, f≥1, p is an odd prime number.
出处
《数学年刊(A辑)》
CSCD
北大核心
2005年第3期391-396,共6页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10128103)资助的项目.
关键词
有限域
方程的解数
有限域的本原元
Finite field, Solution of equation, Primitive element of finite field