期刊文献+

一个来自投资理论的抛物型Monge-Ampère方程初值问题

AN INITIAL VALUE PROBLEM FOR A PARABOLIC MONGE-AMPMERE EQUATION FROM INVESTMENT THEORY
下载PDF
导出
摘要 为寻找抛物型Monge-Ampere方程的初值问题VsVyy+ryVyVyy-θV2y=0, Vyy<0,(s,y)∈[0,T)×R, V(T,Y)=g(y), g'(y)≥0,Y ∈R 满足最优投资理论要求的解,本文给出一个途径,并得到某些存在性结果. For finding solutions satisfying requirement from optimal investment theory to the initial value problem for a parabolic Monge-Ampmere equation: VsVyy+ ryVyVyy-θV2y =0. Vyy< 0,(s, y) ∈[0, T)×R. V(T,y)=g(y). g'(y) ≥0, y ∈ R, an approach is given, and some results about the existence are obtained.
机构地区 吉林大学数学系
出处 《数学年刊(A辑)》 CSCD 北大核心 2005年第3期435-440,共6页 Chinese Annals of Mathematics
关键词 抛物型Monge-Ampère方程 初值问题 最优投资问题 解的存在性 Parabolic Monge-Ampere equation, Initial value problem, Optimal investment problem, Existence of solution
  • 相关文献

参考文献6

  • 1Yong Jiongmin, Introduction to Mathematical Finance [A], in "Mathematical Finance-Theory and Applications" [M], Yong Jiongmin, Rama Cont (eds.), High Education Press, Beijing, 2000, 19-137.
  • 2Krylov, N. V., Boundedly inhomogenuous elliptic and parabolic equations [J], Izv.Akad. Nauk SSSR Ser. Mat., 46(1982), 485-523; English transl., in Math. USSR Izv.,20(1983).
  • 3Wang Guanglie, The first boundary value problem for parabolic Monge-Ampere equation [J], Northeast. Math. J., 3(1987), 463-478.
  • 4Ivochkina, N. M. & Ladyzhenskaja, O. A., On the parabolic equations generated by symmetric functions of the principal curvatures of the evolution surface, or of the eigenvalues of the Hessian, Part Ⅰ: Monge-Ampere equations [J], St. Petersburg Math. J.,6(1995), 375-394.
  • 5Lieberman, G. M., Second Order Parabolic Differetial Equations [M], World Scientific Press, Singapore, New Jersey, London, HongKong, 1996.
  • 6王柔怀 伍卓群.常微分方程讲义[M].北京:人民教育出版社,1963..

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部